Optimal Energy Management of Local Industrial Energy Hubs
نام عام مواد
Dissertation
نام نخستين پديدآور
Morteza Zare Oskouei
وضعیت نشر و پخش و غیره
نام ناشر، پخش کننده و غيره
Faculty of electrical and computer engineering
تاریخ نشرو بخش و غیره
1399
مشخصات ظاهری
نام خاص و کميت اثر
96p.
ساير جزييات
cd
یادداشتهای مربوط به پایان نامه ها
جزئيات پايان نامه و نوع درجه آن
DOCTOR
نظم درجات
Electrical Engineering
زمان اعطا مدرک
1399/12/18
کسي که مدرک را اعطا کرده
Tabriz
یادداشتهای مربوط به خلاصه یا چکیده
متن يادداشت
Increased penetration of renewable energy sources (RESs) with non-uniformly distributed patterns as well as growing on-site generating units in industrialized countries as the backup energy supply units have created unprecedented challenges for bulk power systems to maintain system flexibility and reliability. These technical challenges obligate power system operators to curtail part of the produced renewable energy at various scheduling intervals in order to satisfy the power system constraints. Accordingly, achieving sustainable solutions to boost the flexibility of renewable-based power systems has become one of the major challenges in both industry and academia. Motivated by these challenges, large-scale networked energy hubs are seen as a way forward to boost system flexibility, decrease the rate of renewable power curtailment, and increase energy efficiency. The outcomes of recent studies demonstrate that the deployment of networked energy hubs at strategic points like industrial parks can assist power system operators to use the potentials of multi-carrier energy networks as additional reserves for power systems. To this end, an appropriate roadmap is needed to facilitate the transition towards a renewable-based power system with the aim of identifying hidden synergies and exploiting the potential flexibility of networked energy hubs.Based on the reasons stated, the main objective of this thesis is to create a reliable interface for optimal coordination of large-scale networked energy hubs, e.g., industrial energy hubs (IEHs), and renewable-based power system with particular attention to the advanced ancillary services as the flexibility options and up-to-date energy conversion facilities from the perspective of ``power system operator (PSO)'' and ``industrial energy hub operators (IEHOs)''. The new concepts introduced in this thesis span different degrees of coordination for renewable-based power systems and networked IEHs and awareness of the uncertainty introduced by various sources.From the perspective of PSO, a holistic structure is proposed to determine the optimal coordinated operation of the networked IEHs and the renewable-based power system by relying on the high penetration of RESs. In this regard, various fundamental challenges that have not yet been addressed in an integrated manner, including the CO2 emission rate and the amount of curtailed renewable energy along with total operating costs of the integrated energy system, are among the main aims of the optimization problem. However, centralized management of networked IEHs may not be compatible with the power system operator when they are managed by private owners. Hence, a privacy-preserving decision-making structure is proposed in this paper for the collaborative operation of private IEHs and the renewable-based power system, where the PSO interacts with IEHOs in a leader-followers fashion. The proposed distributed structure is drawn up based on the decentralized two-stage robust-stochastic security-constrained unit commitment (SCUC) model and solved using the Benders decomposition algorithm to respect the private ownership of IEHs. The robust-stochastic approach is used for accurate modeling of renewable power uncertainty and energy demands of local industrial consumers. To reach the desired objectives, the effects of the multi-energy demand response program (DRP) and up-to-date energy conversion facilities, e.g., power-to-heat (P2H) storage and combined heat and power (CHP) unit, as the efficient flexibility options are investigated in the context of the developed model. The competency and robustness of the proposed collaborative decision-making structure and its benefits are examined through several case studies conducted on the IEEE 30-bus test system.From the perspective of IEHOs, deriving an operational model for integrating a large set of IEHs to trade energy in various markets is a fundamental challenge that has not yet been addressed. In this context, an optimal market participation strategy is presented for a virtual energy hub (VEH) consisting of multiple IEHs and industrial consumers. In this section of the thesis, we seek to answer two questions: 1) how can a VEH operator minimize its operation cost when participating in different electricity markets, i.e., day-ahead market (DAM), real-time market (RTM), and local electricity market (LEM), as well as natural gas market (NGM)? 2) how can ancillary services affect the economic performance of VEH? To address these questions, a two-stage robust stochastic optimization model is again provided with the aim of minimizing the total operation cost of VEH and compensating the operational risks associated with the existing uncertainties considering the operational limits of the renewable-based power system. To achieve these aims, the advanced ancillary services, i.e., market-based DRPs and transactive energy management (TEM) mechanism are used in line with the optimization problem. Also, the role of the multi-supply facilities is included in the developed model to improve VEH flexibility. The feasibility of the proposed model is validated through a set of case studies on the modified IEEE 14-bus test system.The above strategies are rendered as mixed-integer linear programming (MILP) problems to be solved using General Algebraic Modelling System (GAMS), which is a commercially available optimization tool. To assure precise performance assessment, optimization outputs related to the proposed operating strategy for the renewable-based power system are further analyzed by DIgSILENT PowerFactory for detailed monitoring of the effectiveness of the proposed structure under normal and emergency conditions.
متن يادداشت
سیستمهای انرژی الکتریکی پایههای بنیادی هر جامعه برای ارتقاء زیرساختهای بخش صنعت و افزایش سطح رفاه اجتماعی میباشند. در سالیان اخیر سوختهای فسیلی در تامین درصد قابل توجهی از انرژی الکتریکی مورد نیاز مصرف کنندگان نقش چشمگیری داشتند، که این امر سبب افزایش میزان انتشار گازهای گلخانهای و تغییرات شدید آب و هوایی در سطح جهان شده است. به همین دلیل مسئله بهینه سازی انرژی در هر دو سمت تولید و مصرف به یک موضوع قابل توجه مابین برنامهریزان سیستمهای الکتریکی تبدیل شده است. به دلیل تهدیدهای فزاینده ناشی از تغییرات آب و هوایی، کاهش ذخایر سوختهای فسیلی و فشارهای سازمانهای بین المللی، دولتها و سیاست گذاران انرژی همواره در تلاش هستند تا ساز و کارهای جدیدی را برای تولید انرژی الکتریکی با کمترین میزان وابستگی به سوختهای فسیلی و منابع کربنی ارائه نمایند. توسعه شبکههای الکتریکی به سمت سیستمهای پایدار و پاک تحت تأثیر تحولات فناوری تولید انرژی، تنظیم میزان عرضه و تقاضا و تحول در بازارها و ساختارهای نظارتی میباشد. طبق مطالعات گسترده صورت گرفته، با توجه به فرسودگی سیستمهای قدرت از نقطه نظر تجهیزات الکتریکی و افزایش بی رویهی تقاضای انرژی علی الخصوص در بخش صنعتی، نیاز به یک سیستم بازسازی شده بر مبنای نیازهای فعلی و پتانسیلهای کارآمد موجود بیش از پیش احساس میشود. پیادهسازی راهکارهای اقتصادی مورد نظر بهرهبرداران سیستمهای قدرت در سطح ملی نیازمند تغییر نگرش و اصلاحات اساسی در زمینههای مختلف مانند نحوهی برنامهریزی عرضه و تقاضای انرژی، ایجاد بستر مناسب برای بکارگیری تکنولوژیهای پیشرفته، تکامل بازارها و ساختارهای نظارتی میباشند
عنوانهای گونه گون دیگر
عنوان گونه گون
مدیریت بهینه انرژی برای سیستمهای محلی هاب انرژی صنعتی
اصطلاحهای موضوعی کنترل نشده
اصطلاح موضوعی
Demand response programs, flexibility options, industrial consumers, industrial energy hub, optimal energy management, renewable energy sources
اصطلاح موضوعی
فاقد کلید واژه فارسی
نام شخص به منزله سر شناسه - (مسئولیت معنوی درجه اول )