Wolfgang Banzhaf, Lee Spector, Leigh Sheneman, editors.
وضعیت نشر و پخش و غیره
محل نشرو پخش و غیره
Cham, Switzerland :
نام ناشر، پخش کننده و غيره
Springer,
تاریخ نشرو بخش و غیره
2019.
مشخصات ظاهری
نام خاص و کميت اثر
1 online resource
فروست
عنوان فروست
Genetic and evolutionary computation
یادداشتهای مربوط به کتابنامه ، واژه نامه و نمایه های داخل اثر
متن يادداشت
Includes bibliographical references and index.
یادداشتهای مربوط به مندرجات
متن يادداشت
1 Exploring Genetic Programming Systems with MAP-Elites.- 2 The Evolutionary Buffet Method.- 3 Emergent Policy Discovery for Visual Reinforcement Learning through Tangled Program Graphs: A Tutorial.- 4 Strong Typing, Swarm Enhancement, and Deep Learning Feature Selection in the Pursuit of Symbolic Regression-Classification.- 5 Cluster Analysis of a Symbolic Regression Search Space.- 6 What else is in an evolved name? Exploring evolvable specificity with SignalGP.- Lexicase Selection Beyond Genetic Programming.- 8 Evolving developmental programs that build neural networks for solving multiple problems.- 9 The Elephant in the Room -- Towards the Application of Genetic Programming to Automatic Programming.- 10 Untapped Potential of Genetic Programming: Transfer Learning and Outlier Removal.- 11 Program Search for Machine Learning Pipelines Leveraging Symbolic Planning and Reinforcement Learning.
بدون عنوان
0
یادداشتهای مربوط به خلاصه یا چکیده
متن يادداشت
These contributions, written by the foremost international researchers and practitioners of Genetic Programming (GP), explore the synergy between theoretical and empirical results on real-world problems, producing a comprehensive view of the state of the art in GP. Topics in this volume include: evolving developmental programs for neural networks solving multiple problems, tangled program, transfer learning and outlier detection using GP, program search for machine learning pipelines in reinforcement learning, automatic programming with GP, new variants of GP, like SignalGP, variants of lexicase selection, and symbolic regression and classification techniques. The volume includes several chapters on best practices and lessons learned from hands-on experience. Readers will discover large-scale, real-world applications of GP to a variety of problem domains via in-depth presentations of the latest and most significant results.