Birational Geometry, Rational Curves, and Arithmeti
نام عام مواد
[Book]
ساير اطلاعات عنواني
:[delta
نام نخستين پديدآور
/ edited by Fedor Bogomolov, Brendan Hassett, Yuri Tschinkel
وضعیت نشر و پخش و غیره
محل نشرو پخش و غیره
New York, NY
نام ناشر، پخش کننده و غيره
: Springer New York :Imprint: Springer,
تاریخ نشرو بخش و غیره
, 2013.
مشخصات ظاهری
نام خاص و کميت اثر
XII, 320 p. 21 illus., online resource.
یادداشتهای مربوط به نشر، بخش و غیره
متن يادداشت
Electronic
یادداشتهای مربوط به مندرجات
متن يادداشت
This book features recent developments in a rapidly growing area at the interface of higher-dimensional birational geometry and arithmetic geometry. It focuses on the geometry of spaces of rational curves, with an emphasis on applications to arithmetic questions. Classically, arithmetic is the study of rational or integral solutions of diophantine equations and geometry is the study of lines and conics. From the modern standpoint, arithmetic is the study of rational and integral points on algebraic varieties over nonclosed fields. A major insight of the 20th century was that arithmetic properties of an algebraic variety are tightly linked to the geometry of rational curves on the variety and how they vary in families. This collection of solicited survey and research papers is intended to serve as an introduction for graduate students and researchers interested in entering the field, and as a source of reference for experts working on related problems. Topics that will be addressed include: birational properties such as rationality, unirationality, and rational connectedness, existence of rational curves in prescribed homology classes, cones of rational curves on rationally connected and Calabi-Yau varieties, as well as related questions within the framework of the Minimal Model Program.
متن يادداشت
Foreword -- Introduction.-A. Bertram and I. Coskun, The birational geometry of the Hilbert scheme of points on surfaces -- F. Bogomolov and Ch. B?╢hning, Isoclinism and stable cohomology of wreath products -- F. Bogomolov, I. Karzhemanov, and K. Kuyumzhiyan, Unirationality and existence of infinitely transitive models -- I. Cheltsov, L. Katzarkov, and V. Przyjalkowski, Birational geometry via moduli spaces -- O. Debarre, Curves of low degrees on projective varieties -- S. Kebekus, Uniruledness criteria and applications -- S. Kov??cs, The cone of curves of K3 surfaces revisited -- V. Lazi??, Around and beyond the canonical class -- C. Liedtke, Algebraic surfaces in positive characteristic -- A. Varilly-Alvarado, Arithmetic of Del Pezzo surfaces.?╗╣
موضوع (اسم عام یاعبارت اسمی عام)
موضوع مستند نشده
Mathematics
موضوع مستند نشده
Geometry, algebraic
موضوع مستند نشده
Geometry
موضوع مستند نشده
Number theory
موضوع مستند نشده
Electronic books
رده بندی کنگره
شماره رده
E-BOOK
نام شخص به منزله سر شناسه - (مسئولیت معنوی درجه اول )