Singularities of subanalytic sets and energy minimizing maps
نام عام مواد
[Thesis]
نام نخستين پديدآور
S.-S. Wang
نام ساير پديدآوران
R. M. Hardt
وضعیت نشر و پخش و غیره
نام ناشر، پخش کننده و غيره
Rice University
تاریخ نشرو بخش و غیره
1993
مشخصات ظاهری
نام خاص و کميت اثر
41
یادداشتهای مربوط به پایان نامه ها
جزئيات پايان نامه و نوع درجه آن
Ph.D.
کسي که مدرک را اعطا کرده
Rice University
امتياز متن
1993
یادداشتهای مربوط به خلاصه یا چکیده
متن يادداشت
This thesis studies some problems derived from differential topology and differential geometry by techniques developed from geometric measure theory, variational calculus, and partial differential equations. It consists of two independent parts: Part I: An isoperimetric type inequality for chains on singular spaces. We find an isoperimetric type inequality for integral chains with support in a subset of usd\IR\sp{n},usd which satisfies some structural conditions but is not in the Lipschitz category. We also apply this inequality to derive some results in the subanalytic category for homologically mass minimizing currents. Part II: Energy minimizing sections of a fiber bundle. We show that a Dirichlet p-energy minimizing section of a fiber bundle is Holder continuous everywhere except possibly for a closed subset of Hausdorff dimension at most usdm - \lbrack p\rbrack\ - 1usd, where m is the dimension of the base space of the fiber bundle and (p) is the greatest integer less than or equal to p.
موضوع (اسم عام یاعبارت اسمی عام)
موضوع مستند نشده
Mathematics
موضوع مستند نشده
Pure sciences
نام شخص به منزله سر شناسه - (مسئولیت معنوی درجه اول )