Structural and Mechanistic Enzymology of Nucleotide Incorporation by A-Family DNA Polymerases
نام عام مواد
[Thesis]
نام نخستين پديدآور
AlMishwat, Mohammad A.
نام ساير پديدآوران
Ferry, J. Gregory
وضعیت نشر و پخش و غیره
نام ناشر، پخش کننده و غيره
The Pennsylvania State University
تاریخ نشرو بخش و غیره
2019
يادداشت کلی
متن يادداشت
227 p.
یادداشتهای مربوط به پایان نامه ها
جزئيات پايان نامه و نوع درجه آن
Ph.D.
کسي که مدرک را اعطا کرده
The Pennsylvania State University
امتياز متن
2019
یادداشتهای مربوط به خلاصه یا چکیده
متن يادداشت
DNA-dependent DNA and RNA polymerases are essential enzymes to gene expression and regulation. DNA polymerases, the enzymes responsible for carrying out and regulating the faithful transmission of an organisms genetic material through the process of DNA replication have been extensively characterized, however, the exact mechanism by which a high fidelity DNA polymerase preferentially incorporates a correct nucleotide, and differentially excludes an incorrect nucleotide during DNA replication is not fully understood. Structural studies of various DNA polymerases and their complexes with DNA have provided a great deal of insight into how catalysis in nucleotide incorporation occurs, and have also provided empirical models of how fidelity is brought about and sustained in these enzymes during DNA replication. This dissertation describes ongoing work to elucidate the mechanism of high-fidelity nucleotide incorporation during DNA replication by an A-family DNA polymerase, employing biochemical and structural studies to dissect the structural and mechanistic changes that occur during nucleotide binding and phosphodiester bond formation between the incoming nucleotide and the growing primer strand. Time-resolved X-ray crystallography is used to monitor and study in real-time, at atomic resolution, the mechanism of nucleotide incorporation in crystallo. This method has been successful in studying the mechanistic details of several enzymes, and we show here that it can be used to directly observe and monitor the sequential structural and mechanistic changes in an A-family DNA polymerase and its bound substrate DNA that are brought about by nucleotide binding to the DNA polymerase active site and subsequent catalysis.
اصطلاحهای موضوعی کنترل نشده
اصطلاح موضوعی
Biochemistry
اصطلاح موضوعی
Cellular biology
اصطلاح موضوعی
Genetics
نام شخص به منزله سر شناسه - (مسئولیت معنوی درجه اول )