نمایش منو
صفحه اصلی
جستجوی پیشرفته
فهرست کتابخانه ها
انتخاب زبان
فارسی
English
العربی
عنوان
Accurate force field for molybdenum by machine learning large materials data
پدید آورنده
Chen, CDeng, ZTran, RTang, HChu, IHOng, SP
موضوع
رده
کتابخانه
مرکز و کتابخانه مطالعات اسلامی به زبانهای اروپایی
محل استقرار
استان:
قم
ـ شهر:
قم
تماس با کتابخانه :
32910706
-
025
شماره کتابشناسی ملی
شماره
LA5t96h307
عنوان و نام پديدآور
عنوان اصلي
Accurate force field for molybdenum by machine learning large materials data
نام عام مواد
[Article]
نام نخستين پديدآور
Chen, CDeng, ZTran, RTang, HChu, IHOng, SP
یادداشتهای مربوط به خلاصه یا چکیده
متن يادداشت
© 2017 American Physical Society. In this work, we present a highly accurate spectral neighbor analysis potential (SNAP) model for molybdenum (Mo) developed through the rigorous application of machine learning techniques on large materials data sets. Despite Mo's importance as a structural metal, existing force fields for Mo based on the embedded atom and modified embedded atom methods do not provide satisfactory accuracy on many properties. We will show that by fitting to the energies, forces, and stress tensors of a large density functional theory (DFT)-computed dataset on a diverse set of Mo structures, a Mo SNAP model can be developed that achieves close to DFT accuracy in the prediction of a broad range of properties, including elastic constants, melting point, phonon spectra, surface energies, grain boundary energies, etc. We will outline a systematic model development process, which includes a rigorous approach to structural selection based on principal component analysis, as well as a differential evolution algorithm for optimizing the hyperparameters in the model fitting so that both the model error and the property prediction error can be simultaneously lowered. We expect that this newly developed Mo SNAP model will find broad applications in large and long-time scale simulations.
مجموعه
تاريخ نشر
2017
عنوان
Lawrence Berkeley National Laboratory
دسترسی و محل الکترونیکی
نام الکترونيکي
مطالعه متن کتاب
اطلاعات رکورد کتابشناسی
نوع ماده
[Article]
کد کاربرگه
277866
اطلاعات دسترسی رکورد
سطح دسترسي
a
تكميل شده
Y
پیشنهاد / گزارش اشکال
×
پیشنهاد / گزارش اشکال
×
اخطار!
اطلاعات را با دقت وارد کنید
گزارش خطا
پیشنهاد