Dorina Mitrea, Irina Mitrea, Marius Mitrea, and Michael Taylor.
وضعیت نشر و پخش و غیره
محل نشرو پخش و غیره
Boston :
نام ناشر، پخش کننده و غيره
De Gruyter,
تاریخ نشرو بخش و غیره
2016.
مشخصات ظاهری
نام خاص و کميت اثر
1 online resource
فروست
عنوان فروست
De Gruyter Studies in Mathematics,
مشخصه جلد
Volume 64
شاپا ي ISSN فروست
0179-0986 ;
یادداشتهای مربوط به کتابنامه ، واژه نامه و نمایه های داخل اثر
متن يادداشت
Includes bibliographical references.
یادداشتهای مربوط به مندرجات
متن يادداشت
Preface ; Contents ; 1 Introduction and Statement of Main Results ; 1.1 First Main Result: Absolute and Relative Boundary Conditions ; 1.2 Other Problems Involving Tangential and Normal Components of Harmonic Forms ; 1.3 Boundary Value Problems for Hodge-Dirac Operators; 1.4 Dirichlet, Neumann, Transmission, Poincaré, and Robin-Type Boundary Problems 1.5 Structure of the Monograph ; 2 Geometric Concepts and Tools ; 2.1 Differential Geometric Preliminaries ; 2.2 Elements of Geometric Measure Theory; 2.3 Sharp Integration by Parts Formulas for Differential Forms in Ahlfors Regular Domains 2.4 Tangential and Normal Differential Forms on Ahlfors Regular Sets ; 3 Harmonic Layer Potentials Associated with the Hodge-de Rham Formalism on UR Domains; 3.1 A Fundamental Solution for the Hodge-Laplacian 3.2 Layer Potentials for the Hodge-Laplacian in the Hodge-de Rham Formalism ; 3.3 Fredholm Theory for Layer Potentials in the Hodge-de Rham Formalism ; 4 Harmonic Layer Potentials Associated with the Levi-Civita Connection on UR Domains; 4.1 The Definition and Mapping Properties of the Double Layer 4.2 The Double Layer on UR Subdomains of Smooth Manifolds ; 4.3 Compactness of the Double Layer on Regular SKT Domains ; 5 Dirichlet and Neumann Boundary Value Problems for the Hodge-Laplacian on Regular SKT Domains.
بدون عنوان
0
یادداشتهای مربوط به خلاصه یا چکیده
متن يادداشت
The core of this monograph is the development of tools to derive well-posedness results in very general geometric settings for elliptic differential operators. A new generation of Calderón-Zygmund theory is developed for variable coefficient singular integral operators, which turns out to be particularly versatile in dealing with boundary value problems for the Hodge-Laplacian on uniformly rectifiable subdomains of Riemannian manifolds via boundary layer methods. In addition to absolute and relative boundary conditions for differential forms, this monograph treats the Hodge-Laplacian equipped with classical Dirichlet, Neumann, Transmission, Poincaré, and Robin boundary conditions in regular Semmes-Kenig-Toro domains. Lying at the intersection of partial differential equations, harmonic analysis, and differential geometry, this text is suitable for a wide range of PhD students, researchers, and professionals. Contents:PrefaceIntroduction and Statement of Main ResultsGeometric Concepts and ToolsHarmonic Layer Potentials Associated with the Hodge-de Rham Formalism on UR DomainsHarmonic Layer Potentials Associated with the Levi-Civita Connection on UR DomainsDirichlet and Neumann Boundary Value Problems for the Hodge-Laplacian on Regular SKT DomainsFatou Theorems and Integral Representations for the Hodge-Laplacian on Regular SKT DomainsSolvability of Boundary Problems for the Hodge-Laplacian in the Hodge-de Rham FormalismAdditional Results and ApplicationsFurther Tools from Differential Geometry, Harmonic Analysis, Geometric Measure Theory, Functional Analysis, Partial Differential Equations, and Clifford AnalysisBibliographyIndex.
یادداشتهای مربوط به سفارشات
منبع سفارش / آدرس اشتراک
MIL
شماره انبار
957926
ویراست دیگر از اثر در قالب دیگر رسانه
عنوان
Hodge-Laplacian.
شماره استاندارد بين المللي کتاب و موسيقي
3110482665
موضوع (اسم عام یاعبارت اسمی عام)
موضوع مستند نشده
Boundary value problems.
موضوع مستند نشده
Riemannian manifolds.
موضوع مستند نشده
Boundary value problems.
موضوع مستند نشده
Laplace-Operator
موضوع مستند نشده
MATHEMATICS-- Geometry-- General.
موضوع مستند نشده
Randwertproblem
موضوع مستند نشده
Riemannian manifolds.
موضوع مستند نشده
Riemannscher Raum
مقوله موضوعی
موضوع مستند نشده
MAT-- 012000
رده بندی ديویی
شماره
516
.
373
رده بندی کنگره
شماره رده
QA649
نشانه اثر
.
M58
2016
سایر رده بندی ها
شماره رده
78A30
کد سيستم
msc
نام شخص به منزله سر شناسه - (مسئولیت معنوی درجه اول )