یادداشتهای مربوط به کتابنامه ، واژه نامه و نمایه های داخل اثر
متن يادداشت
Includes bibliographical references and index.
یادداشتهای مربوط به مندرجات
متن يادداشت
Introduction -- Part 1 Getting Started with Scientific Python -- Installation and Setup -- Numpy -- Matplotlib -- Ipython -- Jupyter Notebook -- Scipy -- Pandas -- Sympy -- Interfacing with Compiled Libraries -- Integrated Development Environments -- Quick Guide to Performance and Parallel Programming -- Other Resources -- Part 2 Probability -- Introduction -- Projection Methods -- Conditional Expectation as Projection -- Conditional Expectation and Mean Squared Error -- Worked Examples of Conditional Expectation and Mean Square Error Optimization -- Useful Distributions -- Information Entropy -- Moment Generating Functions -- Monte Carlo Sampling Methods -- Useful Inequalities -- Part 3 Statistics -- Python Modules for Statistics -- Types of Convergence -- Estimation Using Maximum Likelihood -- Hypothesis Testing and P-Values -- Confidence Intervals -- Linear Regression -- Maximum A-Posteriori -- Robust Statistics -- Bootstrapping -- Gauss Markov -- Nonparametric Methods -- Survival Analysis -- Part 4 Machine Learning -- Introduction -- Python Machine Learning Modules -- Theory of Learning -- Decision Trees -- Boosting Trees -- Logistic Regression -- Generalized Linear Models -- Regularization -- Support Vector Machines -- Dimensionality Reduction -- Clustering -- Ensemble Methods -- Deep Learning -- Notation -- References -- Index.
بدون عنوان
0
یادداشتهای مربوط به خلاصه یا چکیده
متن يادداشت
This book, fully updated for Python version 3.6+, covers the key ideas that link probability, statistics, and machine learning illustrated using Python modules in these areas. All the figures and numerical results are reproducible using the Python codes provided. The author develops key intuitions in machine learning by working meaningful examples using multiple analytical methods and Python codes, thereby connecting theoretical concepts to concrete implementations. Detailed proofs for certain important results are also provided. Modern Python modules like Pandas, Sympy, Scikit-learn, Tensorflow, and Keras are applied to simulate and visualize important machine learning concepts like the bias/variance trade-off, cross-validation, and regularization. Many abstract mathematical ideas, such as convergence in probability theory, are developed and illustrated with numerical examples. This updated edition now includes the Fisher Exact Test and the Mann-Whitney-Wilcoxon Test. A new section on survival analysis has been included as well as substantial development of Generalized Linear Models. The new deep learning section for image processing includes an in-depth discussion of gradient descent methods that underpin all deep learning algorithms. As with the prior edition, there are new and updated *Programming Tips* that the illustrate effective Python modules and methods for scientific programming and machine learning. There are 445 run-able code blocks with corresponding outputs that have been tested for accuracy. Over 158 graphical visualizations (almost all generated using Python) illustrate the concepts that are developed both in code and in mathematics. We also discuss and use key Python modules such as Numpy, Scikit-learn, Sympy, Scipy, Lifelines, CvxPy, Theano, Matplotlib, Pandas, Tensorflow, Statsmodels, and Keras. This book is suitable for anyone with an undergraduate-level exposure to probability, statistics, or machine learning and with rudimentary knowledge of Python programming.
یادداشتهای مربوط به سفارشات
منبع سفارش / آدرس اشتراک
Springer
ویراست دیگر از اثر در قالب دیگر رسانه
شماره استاندارد بين المللي کتاب و موسيقي
9783030185442
شماره استاندارد بين المللي کتاب و موسيقي
9783030185466
شماره استاندارد بين المللي کتاب و موسيقي
9783030185473
موضوع (اسم عام یاعبارت اسمی عام)
موضوع مستند نشده
Computer science.
موضوع مستند نشده
Data mining.
موضوع مستند نشده
Engineering mathematics.
موضوع مستند نشده
Statistics.
موضوع مستند نشده
Telecommunication.
موضوع مستند نشده
Probabilities-- Data processing.
موضوع مستند نشده
Python (Computer program language)
موضوع مستند نشده
Statistics-- Data processing.
رده بندی ديویی
شماره
621
.
382
ويراست
23
رده بندی کنگره
شماره رده
QA76
.
73
.
P98
نشانه اثر
U57
2019
نام شخص به منزله سر شناسه - (مسئولیت معنوی درجه اول )