Use of Multiple Data Assimilation Techniques in Groundwater Contaminant Transport Modeling
نام عام مواد
[Thesis]
نام نخستين پديدآور
Amirul Islam Rajib
نام ساير پديدآوران
Chang, Shoou-Yuh
وضعیت نشر و پخش و غیره
نام ناشر، پخش کننده و غيره
North Carolina Agricultural and Technical State University
تاریخ نشرو بخش و غیره
2016
مشخصات ظاهری
نام خاص و کميت اثر
76
يادداشت کلی
متن يادداشت
Committee members: Jha, Manoj K.; Teasley, Stephanie L.
یادداشتهای مربوط به نشر، بخش و غیره
متن يادداشت
Place of publication: United States, Ann Arbor; ISBN=978-1-339-79797-7
یادداشتهای مربوط به پایان نامه ها
جزئيات پايان نامه و نوع درجه آن
M.S.
نظم درجات
Civil Engineering
کسي که مدرک را اعطا کرده
North Carolina Agricultural and Technical State University
امتياز متن
2016
یادداشتهای مربوط به خلاصه یا چکیده
متن يادداشت
Groundwater contamination assessment can be useful in taking proper actions during the environmental emergency. Traditional contaminant transport models, along with the stochastic filtering techniques, can be a useful tool to predict the contaminant movement accurately. A three-dimensional deterministic model was taken into consideration to simulate the advective-diffusive transport of non-conservative contaminant in groundwater. Multiple stochastic data assimilation techniques, Ensemble Kalman Filter (EnKF), Local Ensemble Transform Kalman Filter (LETKF), and the global form of the LETKF, denoted as GETKF were applied to the model. The groundwater contaminant concentration was predicted for a certain simulation period within a particular domain. The performance of the multiple data assimilation techniques was measured by using the root-mean-square-error (RMSE), Mean absolute error (MAE), and R-squared equations. The results show that data assimilation significantly improved the prediction of contaminant concentration. The EnKF method reduced the root-mean-square-error (RMSE) of the contaminant prediction from 12.5 mg/L to 1.31 mg/L whereas the LETKF and GETKF reduced that to 0.46 mg/L and 0.38 mg/L, respectively. The EnKF, LETKF and GETKF improved prediction by 89.48%, 96.30% and 96.82%, respectively. MAE and R-squared analysis confirmed that stochastic techniques performed better than the deterministic technique. The sensitivity tests suggest that these data assimilation techniques are very sensitive to the observation noise, process noise, and ensemble size.
موضوع (اسم عام یاعبارت اسمی عام)
موضوع مستند نشده
Civil engineering; Water Resource Management; Environmental engineering