1 General sampling techniques.- 1.1 Sampling goals and requirements.- 1.1.1 Ambient sampling.- 1.1.1.1 General objectives.- 1.1.1.2 Meteorological considerations.- 1.1.1.3 Sampling site criteria.- 1.1.1.4 Sample scheduling.- 1.1.2. Source sampling.- 1.1.2.1 General objectives.- 1.1.2.2 Stationary source sampling.- 1.1.2.3 Mobile source sampling.- 1.2 Sampling methods.- 1.2.1 General sampling system considerations.- 1.2.1.1 Intake and transfer component.- 1.2.1.2 Collection component.- 1.2.1.3 Flow measurement component.- 1.2.1.4 Air moving component.- 1.2.2 Aerosols.- 1.2.2.1 Aerosol sampling considerations.- 1.2.2.2 Aerosol sampling collection components.- 1.2.2.3 Ambient aerosol sampling applications.- 1.2.2.4 Emission source aerosol sampling applications.- 1.2.3 Gases.- 1.2.3.1 Gas sampling considerations.- 1.2.3.2 Gas sampling collection components.- 1.2.3.3 Ambient gas sampling applications.- 1.2.3.4 Emission source gas sampling applications.- 1.2.4 Sampling of rainwater and fog.- References.- 2 Air pollution meteorology.- 2.1 Introduction.- 2.1.1 Wind and the turbulent mixing layer.- 2.1.2 The effect of source height.- 2.1.3. Plant design to achieve maximum atmospheric dispersion.- 2 1.4 Factors affecting long-range transport of pollutants.- 2.2 Meteorological measurements.- 2.2.1 Parameters affecting transport and dispersion of pollutants.- 2.2.2 Wind velocity measurements.- 2.2.3 Measurements to determine the atmospheric stability.- 2.2.3.1 Parameterizing the stability.- 2.2.3.2 Measurements of temperature at a fixed height.- 2.2.3.3.Measurements of vertical temperature gradient.- 2.2.3.4 Measurements of thermal radiation.- 2.2.4 Turbulence measurements.- 2.2.4.1 Turbulent energy.- 2.2.4.2 Turbulence spectra.- 2.2.4.3 Turbulent fluxes.- 2.2.5 Measurements of mixing depth.- 2.2.6 Precipitation measurements.- 2.3 Outline of the more important features of the atmospheric transport and dispersion of pollutants.- 2.3.1 Transport and dispersion in different types of air mass or air stream.- 2.3.1.1 Air stream characteristics.- 2.3.1.2 Air mass origins.- 2.3.2 Diurnal variations in air stream characteristics.- 2.3.2.1 Settled anticyclonic.- 2.3.2.2 Warm advection.- 2.3.2.3 Cold advection.- 2.3.2.4 Unsettled cyclonic.- 2.3.3 Frequency of occurrence of different air streams.- 2.3.4 Land and sea breezes.- 2.3.5 Upslope and downslope winds.- 2.3.6 Urban areas and elevated sources.- 2.4 Calculation of the atmospheric transmission of pollutants.- 2.4.1 Introduction.- 2.4.2 Calculation of plume rise.- 2.4.2.1 Selection of equation.- 2.4.2.2 Plume rise formulae.- 2.4.3 The effect of particle fall velocity on plume height.- 2.4.4 Calculation of dispersion.- 2.4.4.1 Eddy diffusivity (or K-type) models.- 2.4.4.2 Gaussian models.- 2.4.4.3 Second and higher order closure models.- 2.4.5 Box and cell models.- 2.4.6 Calculation of trajectories.- 2.4.7 The effects of deposition.- 2.4.7.1 General.- 2.4.7.2 Dry deposition.- 2.4.7.3 Wet deposition.- 2.4.7.4 Occult deposition.- 2.5 Examples of calculations using Gaussian models.- References.- 3 Air pollution chemistry.- 3.1 Introduction.- 3.2 Inorganic reactions.- 3.2.1 The NO-NO2-O3 cycle.- 3.2.2 Formation of radical intermediates.- 3.2.2.1 Hydroxyl and hydroperoxyl radicals.- 3.2.2.2 The NO3 radical.- 3.2.3 Termination reactions.- 3.2.4 Other important inorganic reactions.- 3.2.4.1 HONO.- 3.2.4.2 HNO3, N2O5 and acid deposition.- 3.2.5 Peak concentrations of selected inorganic pollutants observed or expected in polluted atmospheres.- 3.3 Reactions involving organic compounds.- 3.3.1 Reactions of OH radicals with organics.- 3.3.1.1 Alkanes.- 3.3.1.2 Alkenes.- 3.3.1.3 Aromatics.- 3.3.1.4 Aldehydes.- 3.3.2 Reactions of O3 with organics.- 3.3.3 Reactions of NO3 radicals with organics.- 3.3.3.1 Alkanes.- 3.3.3.2 Alkenes.- 3.3.3.3 Aldehydes.- 3.3.3.4 Aromatics.- 3.4 Gas-to-particle conversion.- 3.4.1 SO2 photo-oxidation and formation of sulphate particulate.- 3.4.2 Formation of secondary nitrate and organic particulate.- 3.5 Conclusion.- References.- 4 Analysis of particulate pollutants.- 4.1 Introduction.- 4.1.1 Emission of particulate matter.- 4.1.2 Emission factors for particulate matter.- 4.1.3 Dispersion of atmospheric pollutants from a point source.- 4.1.3.1 Problems of short-term sampling.- 4.2 Suspended material.- 4.2.1 Sampling techniques.- 4.2.1.1 Filter paper techniques.- 4.2.2 Determination of total particulate pollutant concentrations.- 4.2.2.1 Light reflectance method.- 4.2.2.2 Gravimetric techniques.- 4.2.2.3 Other filter paper devices.- 4.2.2.4 Piezoelectric mass monitors.- 4.2.3 Cascade impactors.- 4.2.4 Light scattering techniques.- 4.2.4.1 The integrating nephelometer.- 4.2.4.2 Aerosol particle counters.- 4.2.5 The directional sampler.- 4.3 Dustfall sampling.- 4.3.1 Introduction.- 4.3.2 Designs of national deposit gauges.- 4.3.2.1 The British Standard deposit gauge.- 4.3.2.2 French Standard deposit gauge (Ref. NF, X43-006 (1972)).- 4.3.2.3 Norwegian NILU deposit gauge.- 4.3.3 Short-term surveys.- 4.3.3.1 Single bowl surveys.- 4.3.3.2 Larger surveys.- 4.3.4 British Standard directional deposit gauge.- 4.4 Physical techniques for classification of particulates.- 4.4.1 Density gradient separation.- 4.4.1.1 Density gradient liquids.- 4.4.1.2 Recovery and cleaning of liquids.- 4.4.1.3 Preparation of the gradient.- 4.4.2 Dispersion staining.- 4.4.3 Microscopic techniques.- 4.4.3.1 Mounting samples.- 4.4.3.2 Identification of dusts and reference library.- 4.4.3.3 Description of dusts from different combustion and industrial sources.- 4.4.3.4 Dust identification table.- 4.4.4 Determination of asbestos.- 4.4.4.1 Membrane filter method.- 4.4.4.2 Infrared technique for ambient atmospheres.- 4.4.4.3 Transmission electron microscope methods for ambient atmospheres.- 4.4.5 Determination of particle size distribution.- 4.4.5.1 Sieve techniques.- 4.4.5.2 Microscope techniques.- References.- 5 Metal analysis.- 5.1 Introduction.- 5.2 Analysis of particulate matter.- 5.2.1 General sampling considerations.- 5.2.2 Analytical methods involving no pretreatment of the sample.- 5.2.2.1 X-ray emission analysis.- 5.2.2.2 Radioactivation methods.- 5.2.3 Methods involving pretreatment of the samples.- 5.2.3.1 Emission spectrography.- 5.2.3.2 Ring oven methods.- 5.2.3.3 Polarography.- 5.2.3.4 Anodic stripping voltammetry.- 5.2.3.5 Spark source mass spectrometry.- 5.2.3.6 Spectrophotometry and fluorometry.- 5.2.3.7 Atomic spectroscopy.- 5.2.3.8 Other analytical methods.- 5.3 Gases and vapours.- 5.3.1 General sampling considerations.- 5.3.2.1 Metal carbonyls.- 5.3.2.2 Hg and its compounds.- 5.3.2.3 Volatile Pb compounds.- References.- 6.
متن يادداشت
Low-cost methods for air pollution analysis.- 13.1 Introduction.- 13.2 General considerations.- 13.2.1 An air monitoring network.- 13.2.2 Operating conditions.- 13.2.3 What to look for when selecting a method.- 13.2.3.1 Sensitivity.- 13.2.3.2 Specificity.- 13.2.3.3 Precision.- 13.2.3.4 Stability of reagents.- 13.2.3.5 Calibration.- 13.2.4 Sampling train.- 13.2.5 Total volume of air to be measured.- 13.3 Selected methods for measuring air pollutants.- 13.3.1 Sulphur dioxide.- 13.3.1.1 Lead sulphation candle or plate.- 13.3.1.2 Acidimetric method.- 13.3.2 Nitrogen dioxide.- 13.3.2.1 Sodium arsenite method.- 13.3.3 Carbon monoxide.- 13.3.3.1 Detector tube method.- 13.3.3.2 Instrumental method.- 13.3.4 Oxidant.- 13.3.4.1 Neutral buffered potassium iodide method.- 13.3.5 Suspended particulate matter.- 13.3.5.1 Dustfall.- 13.3.5.2 High-volume (High-Vol) sampling method.- 13.4 Additional considerations for selecting a low-cost air pollution measurement method.- 13.4.1 Equipment requirement.- 13.4.2 Calibration.- 13.4.3 Record keeping.- References.- 14 Planning and execution of an air pollution study.- 14.1 Introduction.- 14.2 Objectives of the monitoring programme.- 14.2.1 General.- 14.2.2 Pollutant identification.- 14.2.3 Source identification.- 14.2.4 Economic assessment of damage versus control.- 14.2.5 On-line plant control.- 14.2.6 Control of future developments.- 14.2.7 Receptor protection.- 14.2.8 Detection of long-term trends.- 14.2.9 Monitoring control.- 14.3 Effluent history from source to receptor.- 14.3.1 General.- 14.3.2 Source network.- 14.3.3 Effluent control processes.- 14.3.4 Effluent transport control procedures.- 14.3.5 Atmospheric transmission.- 14.3.6 The receptor/sink network.- 14.4 The monitoring network.- 14.4.1 General.- 14.4.2 Function monitoring.- 14.4.3 Emission monitoring.- 14.4.4 Plume monitoring.- 14.4.5 Meteorological monitoring.- 14.4.6 Damage monitoring.- 14.4.7 Dose monitoring.- 14.4.8 Monitoring ground-level concentration (GLC).- 14.4 9 Optical effects of pollutants.- 14.4.10. Monitoring wet deposition.- 14.5 The design of pollution monitoring systems.- 14.5.1 General.- 14.5.2 Choice of minimum averaging period.- 14.5.3 Choice of instruments.- 14.5.4 Choice of mobile, fixed, transportable or combined sampling system.- 14.5.5 How many pollutants should be monitored?.- 14.5.6 Height and exposure of samplers.- 14.5.7 Layout and spacing of instruments in fixed surveys.- 14.5.7.1 General.- 14.5.7.2 Discrete source surveys - verification of dispersion models.- 14.5.7.3 Discrete source surveys - statistics of incidence of various levels of pollution.- 14.5.7.4 Area surveys (i.e. sites within the source area).- 14.5.7.5 Distant source surveys.- 14.5.7.6 Global effects surveys.- 14.5.7.7 Multi-purpose surveys.- 14.5.8 Mobile monitoring.- 14.5.8.1 Surface systems.- 14.5.8.2 Airborne systems.- 14.6 Data handling.- 14.6.1 Data transmission.- 14.6.2 Data storage.- 14.6.3 On-line alarm/display systems.- 14.6.4 On-line recognition of defective readings.- 14.7 Analysis of results.- 14.7.1 General.- 14.7.2 Availability of historical data.- 14.7.2.1 Source inventories and characteristics.- 14.7.2.2 Climatological data.- 14.7.2.3 Topographical information.- 14.7.2.4 Experience of similar source networks or other information (e.g. epidemiological) on damage/dosage relations for the pollutants under investigation.- 14.7.3 Elimination of erroneous readings.- 14.7.4 Statistics.- 14.7.4.1 General.- 14.7.4.2 Mean values over specified averaging periods.- 14.7.4.3 Frequency distributions.- 14.7.4.4 Diurnal or annual variations.- 14.7.4.5 Mean values in different weather situations and/or wind directions.- 14.7.4.6 Correlations and regression analysis.- 14.7.5 Evaluation of physical models.- 14.7.5.1 General.- 14.7.5.2 Near field (up to 25 km).- 14.7.5.3 Medium range (20-250 km).- 14.7.5.4 Long range (> 250 km).- 14.8 Examples of monitoring networks and data presentations.- 14.8.1 General.- 14.8.2 Discrete source surveys.- 14.8.2.1 US power plant studies.- 14.8.2.2 CEGB Midlands Region studies of SO2 around power stations.- 14.8.3 Area surveys.- 14.8.3.1 Urban surveys.- 14.8.3.2 Regional surveys.- 14.8.4 Distant sources and global effects.- Acknowledgements.- References.- 15 Quality assurance in air pollution monitoring.- 15.1 Quality and quality assurance.- 15.2 Definitions.- 15.3 Elements of the monitoring chain.- 15.4 Site location and character.- 15.5 Sampling line integrity.- 15.6 Instrument performance.- 15.7 Calibration.- 15.8 Discussion and further checks.- References.
متن يادداشت
Nitrogen and sulphur compounds.- 6.1 Introduction.- 6.2 Basic analytical techniques.- 6.2.1 Sampling techniques.- 6.2.2 Analytical methods - chemical.- 6.2.2.1 Acidimetric methods.- 6.2.2.2 Colorimetric methods.- 6.2.2.3 Coulometric methods.- 6.2.2.4 Miscellaneous chemical methods.- 6.2.3 Physical methods.- 6.2.3.1 Chemiluminescence.- 6.2.3.2 Fluorescence.- 6.2.3.3 Absorption spectroscopy.- 6.2.3.4 Gas chromatography.- 6.2.3.5 Other physical methods.- 6.3 Experimental section.- 6.3.1 Analysis of SO2.- 6.3.1.1 Chemical methods.- 6.3.1.2 Physical analysis of SO2.- 6.3.2 Analysis of SO3.- 6.3.3 Analysis of H2S.- 6.3.3.1 Chemical methods.- 6.3.3.2 Physical methods.- 6.3.4 Analysis of organic S compounds.- 6.3.4.1 Chemical methods.- 6.3.4.2 Physical methods.- 6.3.5 Analysis of oxides of nitrogen - NO and NO2.- 6.3.5.1 Chemical methods.- 6.3.5.2 Physical methods.- 6.3.6 Analysis of NH3.- 6.3.6.1 Chemical methods.- 6.3.6.2 Physical methods.- 6.3.7 Miscellaneous N2 compounds.- 6.3.8 Preparation of standard gas mixtures for calibration.- 6.3.8.1 Preparation of standard mixtures by static methods.- 6.3.8.2 Preparation of standard mixtures by dynamic methods.- 6.4 Particulate compounds of S and N.- 6.4.1 Analysis of SO42-.- 6.4.1.1 Experimental procedure for SO42- (turbidimetric).- 6.4.2 Analysis of particulate NO3-.- 6.4.2.1 Experimental procedure for nitrate (colorimetric).- 6.4.3 Analysis of NH4+salts.- 6.4.3.1 Experimental procedure for NH4+ (colorimetric).- References.- 7 Secondary pollutants.- 7.1 Introduction.- 7.2 Basic analytical techniques for the analysis of gaseous secondary pollutants.- 7.2.1 Sampling methods.- 7.2.2 Analytical techniques.- 7.2.2.1 Chemical methods.- 7.2.2.2 Physical methods.- 7.3 Experimental section.- 7.3.1 Analysis of 'total oxidants'.- 7.3.1.1 Discussion of analytical methods.- 7.3.1.2 Neutral KI method for manual analyses of 'total oxidants'.- 7.3.1.3 Instruments for measurements of total oxidants.- 7.3.2 Analysis of O3.- 7.3.2.1 Chemical methods.- 7.3.2.2 Physical methods.- 7.3.2.3 Measurement of O3 by the C2H4-chemiluminescence method.- 7.3.2.4 Preparation of O3/air mixtures for calibration purposes.- 7.3.3 Analysis of H2O2.- 7.3.3.1 Chemical methods.- 7.3.3.2 Physical methods.- 7.3.4 Analysis of aliphatic aldehydes and oxygenated compounds.- 7.3.4.1 Chemical methods.- 7.3.4.2 A colorimetric analysis of total aliphatic aldehydes in air (MBTH method).- 7.3.4.3 Colorimetric analysis of ECHO (chromotropic acid method).- 7.3.4.4 Physical methods.- 7.3.5Analysis of PAN and related compounds.- 7.3.5.1 Chemical methods.- 7.3.5.2 Physical methods.- 7.3.5.3 Analysis of PAN by electron capture GC.- 7.3.6 Analysis of oxyacids of N.- 7.3.6.1 Chemical methods.- 7.3.6.2 Physical methods.- References.- 8 Hydrocarbons and carbon monoxide.- 8.1 Introduction.- 8.2 Volatile hydrocarbons.- 8.2.1 Sampling procedures.- 8.2.1.1 Cryogenic systems.- 8.2.1.2 Solid adsorption systems.- 8.2.1.3 Gas sampling systems.- 8.2.2 Analytical methods.- 8.2.2.1 Continuous instrumental analysers.- 8.2.2.2 Gas-liquid chromatography (GLC).- 8.2.2.3 Mass spectrometry and gas chromatography/mass spectrometry.- 8.2.2.4 Calibration methods.- 8.2.3 Methods for specific compounds.- 8.2.3.1 C2-C5 hydrocarbons.- 8.2.3.2 C6-C9 hydrocarbons.- 8.3 Hydrocarbon fraction of airborne particulate matter.- 8.3.1 Sampling procedures.- 8.3.2 Extraction and clean-up procedures.- 8.3.3 Analytical methods.- 8.3.3.1 Thin-layer chromatography.- 8.3.3.2 High-performance liquid chromatography.- 8.3.3.3 Gas-liquid chromatography.- 8.3.3.4 Gas-liquid chromatography/mass spectrometry.- 8.4 Carbon monoxide.- References.- 9 Halogen compounds.- 9.1 Fluorides.- 9.1.1 Sampling procedures.- 9.1.2 Analytical procedures.- 9.1.2.1 Pretreatment for particulates.- 9.1.2.2 Ion-selective electrode determination.- 9.1.2.3 Colorimetric determination.- 9.1.3 Recommended experimental procedures.- 9.1.3.1 Sampling.- 9.1.3.2 Pretreatment and clean-up.- 9.1.3.3 Analytical methods.- 9.2 Chlorine.- 9.2.1 Sampling procedures.- 9.2.2 Analytical procedures.- 9.2.3 Recommended experimental procedure.- 9.3 HCl and particulate chloride.- 9.3.1 Sampling procedures.- 9.3.2 Analytical procedures.- 9.3.3 Recommended experimental procedures.- 9.4 Bromides.- 9.4.1 Sampling procedures.- 9.4.2 Analytical procedures.- 9.5. Halogenated hydrocarbons.- 9.5.1 Fluorocarbons.- 9.5.2 Chlorinated hydrocarbons.- 9.5.3 Brominated hydrocarbons.- References.- 10. Remote monitoring techniques.- 10.1 Introduction.- 10.2 Correlation spectroscopy.- 10.2.1 Mode of operation.- 10.2.2 Baseline drift, sensitivity and multiple scattering.- 10.3 Single wavelength lidar.- 10.3.1 Principles of lidar.- 10.3.2 Essentials of a practical system.- 10.3.3 Signal processing.- 10.4 Differential lidar.- 10.4.1 Basic methods.- 10.4.2 Examples of practical systems.- 10.5 Laser safety.- 10.6 Long pathlength absorption spectroscopy (this section by A.M. Winer).- 10.6.1 Differential ultraviolet and visible absorption spectroscopy.- 10.6.2 Fourier transform infrared spectroscopy.- 10.7 Meteorological measurements.- 10.7.1 Meteorological measurements for pollution surveys.- 10.7.2 Sodar.- 10.7.3 Lidar measurements of the mixing layer.- 10.7.4 Temperature profiles.- 10.8 The use of remote sensing in field studies.- 10.8.1 Plume rise and dispersion.- 10.8.2 Measurement of emission fluxes from point sources.- 10.8.3 Multisource monitoring in an industrial area.- 10.9 Conclusions.- Acknowledgements.- References.- 11. Physico-chemical speciation techniques for atmospheric particles.- 11.1 Introduction.- 11.2 Speciation methods.- 11.2.1 X-ray diffraction (XRD).- 11.2.1.1 Phases identified in air by XRD.- 11.2.2 Method for sampling and XRD analysis of atmospheric particles.- 11.2.3 Single particle techniques.- 11.2.3.1 Transmission electron microscope method for atmospheric particles.- 11.2.4 Speciation of sulphuric acid and other particulate sulphates.- 11.2.4.1 Solvent extraction method for speciation of H2SO4, NH4HSO4 and (NH4)2SO4 in ambient air.- References.- 12. Analysis of precipitation.- 12.1 Introduction.- 12.2 Sampling.- 12.2.1 Siting.- 12.2.2 Samplers.- 12.2.2.1 Container material.- 12.2.2.2 Sample preservatives.- 12.2.3 Field procedures.- 12.3 Analysis.- 12.3.1 Filtration.- 12.3.2 Major ions.- 12.3.2.1 pH and other protolytes.- 12.3.2.2 Calcium, magnesium, potassium and sodium.- 12.3.2.3 Ammonia.- 12.3.2.4 Sulphate.- 12.3.2.5 Nitrate.- 12.3.2.6 Chloride.- 12.3.2.7 Specific conductance.- 12.3.2.8 Consistency checks for major ions.- 12.3.3 Trace metals.- 12.3.3.1 Atomic absorption analysis.- 12.3.3.2 Instrumental neutron activation analyses.- 12.3.4 Organics.- 12.3.5 Other analyses.- 12.4 Concluding comment.- References.- 13.