Anthony J. Tromba ; based on lecture notes by Jochen Denzler.
وضعیت نشر و پخش و غیره
محل نشرو پخش و غیره
Basel ; Boston
نام ناشر، پخش کننده و غيره
Birkhäuser
تاریخ نشرو بخش و غیره
1992
مشخصات ظاهری
نام خاص و کميت اثر
220 p. ; 24 cm.
فروست
عنوان فروست
Lectures in mathematics / ETH Zürich, Department of Mathematics, Research Institute of Mathematics.
یادداشتهای مربوط به مندرجات
متن يادداشت
0 Mathematical Preliminaries.- 1 The Manifolds of Teichmuller Theory.- 1.1 The Manifolds A and As.- 1.2 The Riemannian Manifolds M and Ms.- 1.3 The Diffeomorphism Ms /? s ? As.- 1.4 Some Differential Operators and their Adjoints.- 1.5 Proof of Poincare's Theorem.- 1.6 The Manifold Ms-1 and the Diffeomorphism with Ms / s.- 2 The Construction of Teichmuller Space.- 2.1 A Rapid Course in Geodesic Theory.- 2.2 The Free Action of D0 on M-1.- 2.3 The Proper Action of D0 on M-1.- 2.4 The Construction of Teichmuller Space.- 2.5 The Principal Bundles of Teichmuller Theory.- 2.6 The Weil-Petersson Metric on T(M).- 3 T(M) is a Cell.- 3.1 Dirichlet's Energy on Teichmuller Space.- 3.2 The Properness of Dirichlet's Energy.- 3.3 Teichmuller Space is a Cell.- 3.4 Topological Implications; The Contractibility of D0.- 4 The Complex Structure on Teichmuller Space.- 4.1 Almost Complex Principal Fibre Bundles.- 4.2 Abresch-Fischer Holomorphic Coordinates for A.- 4.3 Abresch-Fischer Holomorphic Coordinates for T(M).- 5 Properties of the Weil-Petersson Metric.- 5.1 The Weil-Petersson Metric is Kahler.- 5.2 The Natural Algebraic Connection on A.- 5.3 Further Properties of the Algebraic Connection and the non-Integrability of the Horizontal Distribution on A.- 5.4 The Curvature of Teichmuller Space with Respect to its Weil-Petersson Metric.- 5.5 An Asymptotic Property of Weil-Petersson Geodesies.- 6 The Pluri-Subharmonicity of Dirichlet's Energy on T(M); T(M) is a Stein-Manifold.- 6.1 Pluri-Subharmonic Functions and Complex Manifolds.- 6.2 Dirichlet's Energy is Strictly Pluri-Subharmonic.- 6.3 Wolf's Form of Dirichlet's Energy on T(M) is Strictly Weil-Petersson Convex.- 6.4 The Nielsen Realization Problem.- A Proof of Lichnerowicz' Formula.- B On Harmonic Maps.- C The Mumford Compactness Theorem.- D Proof of the Collar Lemma.- E The Levi-Form of Dirichlet's Energy.- F Riemann-Roch and the Dimension of Teichmuller Space.- Indexes.- Index of Notation.- A Chart of the Maps Used.- Index of Key Words.
موضوع (اسم عام یاعبارت اسمی عام)
موضوع مستند نشده
énergie Dirichlet.
موضوع مستند نشده
espace Teichmuller.
موضوع مستند نشده
métrique.
رده بندی کنگره
شماره رده
QA331
نشانه اثر
.
A584
1992
نام شخص به منزله سر شناسه - (مسئولیت معنوی درجه اول )
مستند نام اشخاص تاييد نشده
Anthony J. Tromba ; based on lecture notes by Jochen Denzler.