growth and properties of phosphorus containing iiiv ...
نام نخستين پديدآور
Morton B Panish
وضعیت نشر و پخش و غیره
محل نشرو پخش و غیره
[Place of publication not identified]
نام ناشر، پخش کننده و غيره
Springer
تاریخ نشرو بخش و غیره
2012
یادداشتهای مربوط به مندرجات
متن يادداشت
1. Introduction.- 1.1 Introduction to Molecular Beam Epitaxy.- 1.2 Introduction to Gas Source Molecular Beam Epitaxy.- 1.3 Why Gas Sources?.- 1.4 Heterostructures with GSMBE.- 2. Chemistry.- 2.1 Equilibrium, the Phase Diagram, and Molecular Beam Epitaxy.- 2.2 Liquid-Solid-Vapor Relationships for the Growth of InP and GaAs.- 2.2.1 Indium Phosphide.- 2.2.2 Gallium Arsenide.- 2.3 III-V Solid Solutions.- 2.3.1 Ga0.47In0.53As.- 2.3.2 Ga0.5In0.5P.- 2.3.3 AlGaAs and AlInAs.- 2.3.4 GaxIn1-xASyP0.471-y.- 2.4 Group III Metalorganics - Metalorganic MBE.- 2.4.1 Decomposition of the Group III Metalorganics.- 2.4.2 Addition Compounds to Replace Group III Alkylmetalorganics.- 2.5 Group V Metalorganics to Replace Arsine and Phosphine.- 3. The Generation of Atomic and Molecular Beams for Elemental and Gas Source Molecular Beam Epitaxy.- 3.1 Background.- 3.2 Molecular Effusion: The Ideal Effusion Cell.- 3.3 Real Effusion Cells.- 3.3.1 Beam Flux Distribution.- 3.3.2 Time Dependent Flux Variations.- 3.4 Gas Sources and Their Use in GSMBE.- 3.4.1 Thermal Cracking of Arsine and Phosphine and Equilibria Among Group V Molecular Species.- 3.4.2 High Pressure Gas Sources.- 3.4.3 Low Pressure Gas Sources.- 3.5 Introduction of the Group III Metalorganics into the MBE System.- 4. Molecular Beam Epitaxy Systems and Procedures.- 4.1 The Conventional Growth Chamber-Configuration for ESMBE, HSMBE and MOMBE.- 4.2 System Pressure - Pumping.- 4.2.1 System Pressure Limitations for GSMBE.- 4.2.2 Pumping the Growth Chamber.- 4.3 Sample Introduction, Transfer and Manipulation.- 4.4 Substrate Temperature Measurement and Control.- 4.5 Gas Handling.- 4.5.1 Pressure Regulated Control.- 4.5.2 Mass Flow Control.- 4.6 Arsine and Phosphine Generators.- 4.6.1 Electrochemical Arsine and Phosphine Generation.- 4.6.2 Storage of AsH3 and PH3 by Adsorption on Synthetic Zeolite.- 4.7 Safe Handling of Arsine and Phosphine for GSMBE.- 4.8 Procedures for GSMBE.- 4.8.1 Start-up: System Preparation.- 4.8.2 Substrate Preparation and Mounting on the Sample Block.- 4.8.3 Growth of Layers.- 4.9 The RHEED Apparatus, Growth Rate and Composition Calibration.- 4.10 Metalorganic MBE Systems - Potential for Scaleup.- 5. Doping During GSMBE.- 5.1 Background.- 5.2 Maximum Free-Carrier Concentrations in Semiconductors.- 5.3 Background Doping and Carbon Incorporation.- 5.3.1 Background Doping.- 5.3.2 Deliberate Doping with Carbon: GaAs and AlGaAs.- 5.4 Doping with Tin.- 5.4.1 Sn in InP and GaAs.- 5.4.2 Sn in GaInAs.- 5.5 Doping with Be.- 5.5.1 Be in GaAs.- 5.5.2 Be in InP and GaInAs.- 5.6 Zn in InP and GaInAs.- 5.7 Si in GaAs, InP and GaInAs.- 5.8 Semi-insulating InP by Fe Doping During MBE.- 6. Characterization of Heterostructures by High Resolution X-ray Diffraction.- 6.1 X-Ray Diffraction of Epitaxial Layers.- 6.2 Periodic Epitaxial Semiconductor Structures.- 6.3 High-Resolution X-Ray Diffraction.- 6.4 High-Resolution Rocking Curves of Superlattices.- 6.4.1 Strained-Layer Superlattices (SLS).- 6.4.2 Interfacial Layers.- 6.5 Intrinsic Strain at Heterostructure Interfaces.- 7. Optical Properties of Quantum Wells.- 7.1 Energy Levels in Quantum Wells.- 7.2 Single Quantum Wells.- 7.3 Superlattices.- 7.4 Quantum Wires and Boxes.- 7.5 Electric Field Effects.- 7.6 Strained-Layer Superlattices.- 7.6.1 Critical Layer Thickness.- 7.6.2 Strain and Electronic Energy Levels.- 7.6.3 The Strain Model.- 7.6.4 A Type-II GaInAs/InP Superlattice.- 7.6.5 Exciton Energies of Strained GaxIn1-xAs.- 7.7 Thermal Stability.- 8. Carrier Transport Across Quantum Wells and Superlattices.- 8.1 Experimental Techniques.- 8.1.1 Capacitance-Voltage Profiling.- 8.1.2 Admittance Spectroscopy.- 8.1.3 Deep-Level Transient Spectroscopy.- 8.2 Motion of Photo-Induced Holes.- 8.3 Sequential Screening.- 8.4 Barrier Height.- 8.5 Heterojunction Band Offsets.- 8.6 Telegraph Noise.- 9. Bipolar Transistors.- 9.1 Background.- 9.2 Figures of Merit.- 9.2.1 Current Gain.- 9.2.2 High-Speed Characteristics.- 9.3 Device Fabrication.- 9.4 DC Characteristics.- 9.4.1 Moderate Base Doping.- 9.4.2 Lateral Scaling.- 9.4.3 High Doping of the Base.- 9.4.4 Minority Carrier Diffusion Length.- 9.5 Temperature Dependence.- 9.6 Carrier Transport.- 9.7 Gain Dependence on the Base Thickness.- 9.8 Microwave Devices.- 9.9 Applications.- 9.9.1 The Heterostructure Phototransistor.- 9.9.2 Integrated p-i-n-HBT Photoreceiver.- 9.9.3 Laser Drivers.- 9.9.4 Amplifiers.- 10. Optoelectronic Devices.- 10.1 Broad-Area Lasers.- 10.1.1 Separate Confinement Heterostructure (SCH) Lasers.- 10.1.2 Quantum-Well Lasers.- 10.2 Buried Heterostructure Lasers.- 10.3 Single-Frequency Lasers.- 10.3.1 The Distributed Bragg Reflector (DBR) Laser.- 10.3.2 Distributed Feedback (DFB) Lasers.- 10.4 Visible Lasers.- 10.5 Photodetectors.- 10.5.1 Avalanche Photodiodes.- 10.5.2 Strained-Layer Detectors.- 10.6 Quantum-Well Inter-sub-band Detectors.- 11. In-Situ Processing and Selective Area Epitaxy.- 11.1 Pattern Formation.- 11.1.1 In-situ Processing Apparatus.- 11.1.2 Native Oxide Masks.- 11.2 Ion-Induced Damage.- 11.3 Towards Vacuum Lithography.- 11.3.1 Formation of a Native Oxide Mask.- 11.3.2 Pattern Generation in the Oxide Mask.- 11.3.3 Pattern Transfer.- 11.3.4 Oxide Mask Removal.- 11.4 Buried Heterostructures.- 11.5 Selective-Area Epitaxy.- 11.5.1 Selective Growth with Si Masks.- 11.5.2 Selectively Grown Lasers.- 11.5.3 Selective Growth with the Dielectric Masks.- 11.5.4 Diodes and Bipolar Transistors.- References.
رده بندی کنگره
شماره رده
QC611
.
6
.
M64
نشانه اثر
M678
2012
نام شخص به منزله سر شناسه - (مسئولیت معنوی درجه اول )