Preface; 1 Introduction; 1.1 What Is IBE?; 1.2 Why Should I Care About IBE?; 2Basic Mathematical Concepts andProperties; 2.1 Concepts from Number Theory; 2.1.1 Computing the GCD; 2.1.2 Computing Jacobi Symbols; 2.2 Concepts from Abstract Algebra; 3 Properties of Elliptic Curves; 3.1 Elliptic Curves; 3.2 Adding Points on Elliptic Curves; 3.2.1 Algorithm for Elliptic Curve Point Addition; 3.2.2 Projective Coordinates; 3.2.3 Adding Points in Jacobian Projective Coordinates; 3.2.4 Doubling a Point in Jacobian Projective Coordinates; 3.3 Algebraic Structure of Elliptic Curves. 3.3.1 Higher Degree Twists3.3.2 Complex Multiplication; 4Divisors and the Tate Pairing; 4.1 Divisors; 4.1.1 An Intuitive Introduction to Divisors; 4.2 The Tate Pairing; 4.2.1 Properties of the Tate Pairing; 4.3 Miller's Algorithm; 5Cryptography and ComputationalComplexity; 5.1 Cryptography; 5.1.1 Definitions; 5.1.2 Protection Provided by Encryption; 5.1.3 The Fujisaki-Okamoto Transform; 5.2 Running Times of Useful Algorithms; 5.2.1 Finding Collisions for a Hash Function; 5.2.2 Pollard's Rho Algorithm; 5.2.3 The General Number Field Sieve; 5.2.4 The Index Calculus Algorithm. 5.2.5 Relative Strength of Algorithms5.3 Useful Computational Problems; 5.3.1 The Computational Diffie-Hellman Problem; 5.3.2 The Decision Diffie-Hellman Problem; 5.3.3 The Bilinear Diffie-Hellman Problem; 5.3.4 The Decision Bilinear Diffie-Hellman Problem; 5.3.5 q-Bilinear Diffie-Hellman Inversion; 5.3.6 q-Decision Bilinear Diffie-Hellman Inversion; 5.3.7 Cobilinear Diffie-Hellman Problems; 5.3.8 Integer Factorization; 5.3.9 Quadratic Residuosity; 5.4 Selecting Parameter Sizes; 5.4.1 Security Based on Integer Factorization and Quadratic Residuosity. 5.4.2 Security Based on Discrete Logarithms5.5 Important Special Cases; 5.5.1 Anomalous Curves; 5.5.2 Supersingular Elliptic Curves; 5.5.3 Singular Elliptic Curves; 5.5.4 Weak Primes; 5.6 Proving Security of Public-Key Algorithms; 5.7 Quantum Computing; 5.7.1 Grover's Algorithm; 5.7.2 Shor's Algorithm; 6Related Cryptographic Algorithms; 6.1 Goldwasser-Michali Encryption; 6.2 The Diffie-Hellman Key Exchange; 6.3 Elliptic Curve Diffie-Hellman; 6.4 Joux's Three-Way Key Exchange; 6.5 ElGamal Encryption; 7The Cocks IBE Scheme; 7.1 Setup of Parameters; 7.2 Extraction of the Private Key. 7.3 Encrypting with Cocks IBE7.4 Decrypting with Cocks IBE; 7.5 Examples; 7.6 Security of the Cocks IBE Scheme; 7.6.1 Relationship to the Quadratic Residuosity Problem; 7.6.2 Chosen Ciphertext Security; 7.6.3 Proof of Security; 7.6.4 Selecting Parameter Sizes; 7.7 Summary; 8Boneh-Franklin IBE; 8.1 Boneh-Franklin IBE (Basic Scheme); 8.1.1 Setup of Parameters (Basic Scheme); 8.1.2 Extraction of the Private Key (Basic Scheme); 8.1.3 Encrypting with Boneh-Franklin IBE (Basic Scheme); 8.1.4 Decrypting with Boneh-Franklin IBE (Basic Scheme); 8.1.5 Examples (Basic Scheme). 8.2 Boneh-Franklin IBE (Full Scheme).
یادداشتهای مربوط به خلاصه یا چکیده
متن يادداشت
Until now, details on Identity-Based Encryption (IBE) wasw available only through scattered journal articles and conference proceedings. This unique book is the first single souce of comprehensive IBE information, explaining what IBE is and how it differs from other public-key technologies, why IBE schemes are secure, what techniques were used to create secure IBE schemes, and how to efficiently implement IBE.
موضوع (اسم عام یاعبارت اسمی عام)
موضوع مستند نشده
Data encryption (Computer science)
موضوع مستند نشده
Public key cryptography.
موضوع مستند نشده
Public key infrastructure (Computer security)
رده بندی کنگره
شماره رده
QA76
.
9
.
A25
نشانه اثر
L884
2008
نام شخص به منزله سر شناسه - (مسئولیت معنوی درجه اول )