Mark Woodward, Professor of Statistics and Epidemiology, University of Oxford, UK, Professor of Biostatistics, The George Institute for Global Health, University of Sydney, Australia, Adjunct Professor of Epidemiology, Johns Hopkins University, USA.
EDITION STATEMENT
Edition Statement
Third edition
.PUBLICATION, DISTRIBUTION, ETC
Place of Publication, Distribution, etc.
Boca Raton
Name of Publisher, Distributor, etc.
CRC Press,Taylor & Francis Group
Date of Publication, Distribution, etc.
[2014]
PHYSICAL DESCRIPTION
Specific Material Designation and Extent of Item
(xxii, 832 pages ) : illustrations.
SERIES
Series Title
Texts in statistical science.
GENERAL NOTES
Text of Note
A Chapman & Hall book.
CONTENTS NOTE
Text of Note
--;14.4.3.Sensible strategies --;14.5.Further examples of bootstrapping --;14.5.1.Complex bootstrap samples --;14.6.Bootstrap hypothesis testing --;14.7.Limitations of bootstrapping --;14.8.Permutation tests --;14.8.1.Monte Carlo permutation tests --;14.8.2.Limitations --;14.9.Missing values --;14.9.1.Dealing with missing values --;14.9.2.Types of missingness --;14.9.3.Complete case analyses Note continued: 14.10.Naive imputation methods --;14.10.1.Mean imputation --;14.10.2.Conditional mean and regression imputation --;14.10.3.Hot deck imputation and predictive mean matching --;14.10.4.Longitudinal data --;14.11.Univariate multiple imputation --;14.11.1.Multiple imputation by regression --;14.11.2.The three-step process in MI \ --;14.11.3.Imputer's and analyst's models --;14.11.4.Rubin's equations --;14.11.5.Imputation diagnostics --;14.11.6.Skewed continuous data --;14.11.7.Other types of variables --;14.11.8.How many imputations? --;14.12.Multivariate multiple imputation --;14.12.1.Monotone imputation --;14.12.2.Data augmentation --;14.12.3.Categorical variables --;14.12.4.What to do when DA fails --;14.12.5.Chained equations --;14.12.6.Longitudinal data --;14.13.When is it worth imputing? --;Exercises.
Text of Note
data --;9.4.4.Unbalanced data --;9.4.5.Fitted values --;9.4.6.Least squares means --;9.4.7.Interaction --;9.5.Model building --;9.6.General linear models --;9.7.Several explanatory variables --;9.7.1.Information criteria --;9.7.2.Boosted regression --;9.8.Model checking --;9.9.Confounding --;9.9.1.Adjustment using residuals --;9.10.Splines --;9.10.1.Choice of knots --;9.10.2.Other types of splines --;9.11.Panel data --;9.12.Non-normal alternatives --;Exercises --;10.1.Introduction --;10.2.Problems with standard regression models --;10.2.1.The r-x relationship may well not be linear --;10.2.2.Predicted values of the risk may be outside the valid range --;10.2.3.The error distribution is not normal Note continued: 10.3.Logistic regression --;10.4.Interpretation of logistic regression coefficients --;10.4.1.Binary risk factors --;10.4.2.Quantitative risk factors --;10.4.3.Categorical risk factors --;10.4.4.Ordinal risk factors --;10.4.5.Floating absolute risks --;10.5.Generic data --;10.6.Multiple logistic regression models --;10.7.Tests of hypotheses --;10.7.1.Goodness of fit for grouped data --;10.7.2.Goodness of fit for generic data --;10.7.3.Effect of a risk factor --;10.7.4.Information criteria --;10.7.5.Tests for linearity and nonlinearity --;10.7.6.Tests based upon estimates and their standard errors --;10.7.7.Problems with missing values --;10.8.Confounding --;10.9.Interaction --;10.9.1.Between two categorical variables --;10.9.2.Between a quantitative and a categorical variable --;10.9.3.Between two quantitative variables --;10.10.Dealing with a quantitative explanatory variable --;10.10.1.Linear form --;10.10.2.Categorical form Note continued: 10.10.3.Linear spline form --;10.10.4.Generalisations --;10.11.Model checking --;10.11.1.Residuals --;10.11.2.Influential observations --;10.12.Measurement error --;10.12.1.Regression to the mean --;10.12.2.Correcting for regression dilution --;10.13.Case-control studies --;10.13.1.Unmatched studies --;10.13.2.Matched studies --;10.14.Outcomes with several levels --;10.14.1.The proportional odds assumption --;10.14.2.The proportional odds model --;10.14.3.Multinomial regression --;10.15.Longitudinal data --;10.16.Binomial regression --;10.16.1.Adjusted risks --;10.16.2.Risk differences --;10.16.3.Problems with binomial models --;10.17.Propensity scoring --;10.17.1.Pair-matched propensity scores --;10.17.2.Stratified propensity scores --;10.17.3.Weighting by the inverse propensity score --;10.17.4.Adjusting for the propensity score --;10.17.5.Deriving the propensity score --;10.17.6.Propensity score outliers --;10.17.7.Conduct of the matched design Note continued: 10.17.8.Analysis of the matched design --;10.17.9.Case studies --;10.17.10.Interpretation of effects --;10.17.11.Problems with estimating uncertainty --;10.17.12.Propensity scores in practice --;Exercises --;11.1.Introduction --;11.1.1.Models for survival data --;11.2.Basic functions of survival time --;11.2.1.The survival function --;11.2.2.The hazard function --;11.3.Estimating the hazard function --;11.3.1.Kaplan-Meier estimation --;11.3.2.Person-time estimation --;11.3.3.Actuarial estimation --;11.3.4.The cumulative hazard --;11.4.Probability models --;11.4.1.The probability density and cumulative distribution functions --;11.4.2.Choosing a model --;11.4.3.The exponential distribution --;11.4.4.The Weibull distribution --;11.4.5.Other probability models --;11.5.Proportional hazards regression models --;11.5.1.Comparing two groups --;11.5.2.Comparing several groups --;11.5.3.Modelling with a quantitative variable Note continued: 11.5.4.Modelling with several variables --;11.5.5.Left-censoring --;11.6.The Cox proportional hazards model --;11.6.1.Time-dependent covariates --;11.6.2.Recurrent events --;11.7.The Weibull proportional hazards model --;11.8.Model checking --;11.8.1.Log cumulative hazard plots --;11.8.2.An objective test of proportional hazards for the Cox model --;11.8.3.An objective test of proportional hazards for the Weibull model --;11.8.4.Residuals and influence --;11.8.5.Nonproportional hazards --;11.9.Competing risk --;11.9.1.Joint modeling of longitudinal and survival data --;11.10.Poisson regression --;11.10.1.Simple regression --;11.10.2.Multiple regression --;11.10.3.Comparison of standardised event ratios --;11.10.4.Routine or registration data --;11.10.5.Generic data --;11.10.6.Model checking --;11.11.Pooled logistic regression --;Exercises --;12.1.Reviewing evidence --;12.1.1.The Cochrane Collaboration --;12.2.Systematic review Note continued: 12.2.1.Designing a systematic review --;12.2.2.Study quality --;12.3.A general approach to pooling --;12.3.1.Inverse variance weighting --;12.3.2.Fixed effect and random effects --;12.3.3.Quantifying heterogeneity --;12.3.4.Estimating the between-study variance --;12.3.5.Calculating inverse variance weights --;12.3.6.Calculating standard errors from confidence intervals --;12.3.7.Case studies --;12.3.8.Pooling risk differences --;12.3.9.Pooling differences in mean values --;12.3.10.Other quantities --;12.3.11.Pooling mixed quantities --;12.3.12.Dose-response meta-analysis --;12.4.Investigating heterogeneity --;12.4.1.Forest plots --;12.4.2.Influence plots --;12.4.3.Sensitivity analyses --;12.4.4.Meta-regression --;12.5.Pooling tabular data --;12.5.1.Inverse variance weighting --;12.5.2.Mantel-Haenszel methods --;12.5.3.The Peto method --;12.5.4.Dealing with zeros --;12.5.5.Advantages and disadvantages of using tabular data Note continued: 12.6.Individual participant data --;12.7.Dealing with aspects of study quality --;12.8.Publication bias --;12.8.1.The funnel plot --;12.8.2.Consequences of publication bias --;12.8.3.Correcting for publication bias --;12.8.4.Other causes of asymmetry in funnel plots --;12.9.Advantages and limitations of meta-analysis --;Exercises --;13.1.Introduction --;13.1.1.Individual and population level interventions --;13.1.2.Scope of this chapter --;13.2.Association and prognosis --;13.2.1.The concept of discrimination --;13.2.2.Risk factor thresholds --;13.2.3.Risk thresholds --;13.2.4.Odds ratios and discrimination --;13.3.Risk scores from statistical models --;13.3.1.Logistic regression --;13.3.2.Multiple variable risk scores --;13.3.3.Cox regression --;13.3.4.Risk thresholds --;13.3.5.Multiple thresholds --;13.4.Quantifying discrimination --;13.4.1.The area under the curve --;13.4.2.Comparing AUCs --;13.4.3.Survival data Note continued: 13.4.4.The standardised mean effect size --;13.4.5.Other measures of discrimination --;13.5.Calibration --;13.5.1.Overall calibration --;13.5.2.Mean calibration --;13.5.3.Grouped calibration --;13.5.4.Calibration plots --;13.6.Recalibration --;13.6.1.Recalibration of the mean --;13.6.2.Recalibration of scores in a fixed cohort --;13.6.3.Recalibration of parameters from a Cox model --;13.6.4.Recalibration and discrimination --;13.7.The accuracy of predictions --;13.7.1.The Brier score --;13.7.2.Comparison of Brier scores --;13.8.Assessing an extraneous prognostic variable --;13.9.Reclassification --;13.9.1.The integrated discrimination improvement from a fixed cohort --;13.9.2.The net reclassification improvement from a fixed cohort --;13.9.3.The integrated discrimination improvement from a variable cohort --;13.9.4.The net reclassification improvement from a variable cohort --;13.9.5.Software --;13.10.Validation --;13.11.Presentation of risk scores Note continued: 13.11.1.Point scoring --;13.12.Impact studies --;Exercises --;14.1.Rationale --;14.2.The bootstrap --;14.2.1.Bootstrap distributions --;14.3.Bootstrap confidence intervals --;14.3.1.Bootstrap normal intervals --;14.3.2.Bootstrap percentile intervals --;14.3.3.Bootstrap bias-corrected intervals --;14.3.4.Bootstrap bias-corrected and accelerated intervals --;14.3.5.Overview of the worked example --;14.3.6.Choice of bootstrap interval --;14.4.Practical issues when bootstrapping --;14.4.1.Software --;14.4.2.How many replications should be used?
Text of Note
Machine generated contents note: 1.1.What is epidemiology? --;1.2.Case studies: the work of Doll and Hill --;1.3.Populations and samples --;1.3.1.Populations --;1.3.2.Samples --;1.4.Measuring disease --;1.4.1.Incidence and prevalence --;1.5.Measuring the risk factor --;1.6.Causality --;1.6.1.Association --;1.6.2.Problems with establishing causality --;1.6.3.Principles of causality --;1.7.Studies using routine data --;1.7.1.Ecological data --;1.7.2.National sources of data on disease --;1.7.3.National sources of data on risk factors --;1.7.4.International data --;1.8.Study design --;1.8.1.Intervention studies --;1.8.2.Observational studies --;1.9.Data analysis --;Exercises --;2.1.Introduction --;2.1.1.Inferential procedures --;2.2.Case study --;2.2.1.The Scottish Heart Health Study --;2.3.Types of variables --;2.3.1.Qualitative variables --;2.3.2.Quantitative variables --;2.3.3.The hierarchy of type --;2.4.Tables and charts --;2.4.1.Tables in reports Note continued: 2.4.2.Diagrams in reports --;2.5.Inferential techniques for categorical variables --;2.5.1.Contingency tables --;2.5.2.Binary variables: proportions and percentages --;2.5.3.Comparing two proportions or percentages --;2.6.Descriptive techniques for quantitative variables --;2.6.1.The five-number summary --;2.6.2.Quantiles --;2.6.3.The two-number summary --;2.6.4.Other summary statistics of spread --;2.6.5.Assessing symmetry --;2.6.6.Investigating shape --;2.7.Inferences about means --;2.7.1.Checking normality --;2.7.2.Inferences for a single mean --;2.7.3.Comparing two means --;2.7.4.Paired data --;2.8.Inferential techniques for non-normal data --;2.8.1.Transformations --;2.8.2.Nonparametric tests --;2.8.3.Confidence intervals for medians --;2.9.Measuring agreement --;2.9.1.Quantitative variables --;2.9.2.Categorical variables --;2.9.3.Ordered categorical variables --;2.9.4.Internal consistency --;2.10.Assessing diagnostic tests Note continued: 2.10.1.Accounting for sensitivity and specificity --;Exercises --;3.1.Risk and relative risk --;3.2.Odds and odds ratio --;3.3.Relative risk or odds ratio? --;3.4.Prevalence studies --;3.5.Testing association --;3.5.1.Equivalent tests --;3.5.2.One-sided tests --;3.5.3.Continuity corrections --;3.5.4.Fisher's exact test --;3.5.5.Limitations of tests --;3.6.Risk factors measured at several levels --;3.6.1.Continuous risk factors --;3.6.2.A test for linear trend --;3.6.3.A test for nonlinearity --;3.7.Attributable risk r s --;3.8.Rate and relative rate --;3.8.1.The general epidemiological rate --;3.9.Measures of difference --;3.10.EPITAB commands in Stata --;Exercises --;4.1.Introduction --;4.2.The concept of confounding --;4.3.Identification of confounders --;4.3.1.A strategy for selection --;4.4.Assessing confounding --;4.4.1.Using estimation --;4.4.2.Using hypothesis tests --;4.4.3.Dealing with several confounding variables --;4.5.Standardisation Note continued: 4.5.1.Direct standardisation of event rates --;4.5.2.Indirect standardisation of event rates --;4.5.3.Standardisation of risks --;4.6.Mantel-Haenszel methods --;4.6.1.The Mantel-Haenszel relative risk --;4.6.2.The Cochran-Mantel-Haenszel test --;4.6.3.Further comments --;4.7.The concept of interaction --;4.8.Testing for interaction --;4.8.1.Using the relative risk --;4.8.2.Using the odds ratio --;4.8.3.Using the risk difference --;4.8.4.Which type of interaction to use? --;4.8.5.Which interactions to test? --;4.9.Dealing with interaction --;4.10.EPITAB commands in Stata --;Exercises --;5.1.Design considerations --;5.1.1.Advantages --;5.1.2.Disadvantages --;5.1.3.Alternative designs with economic advantages --;5.1.4.Studies with a single baseline sample --;5.2.Analytical considerations --;5.2.1.Concurrent follow-up --;5.2.2.Moving baseline dates --;5.2.3.Varying follow-up durations --;5.2.4.Withdrawals --;5.3.Cohort life tables Note continued: 5.3.1.Allowing for sampling variation --;5.3.2.Allowing for censoring --;5.3.3.Comparison of two life tables --;5.3.4.Limitations --;5.4.Kaplan-Meier estimation --;5.4.1.An empirical comparison --;5.5.Comparison of two sets of survival probabilities --;5.5.1.Mantel-Haenszel methods --;5.5.2.The log-rank test --;5.5.3.Weighted log-rank tests --;5.5.4.Allowing for confounding variables --;5.5.5.Comparing three or more groups --;5.6.Competing risk --;5.7.The person-years method --;5.7.1.Age-specific rates --;5.7.2.Summarisation of rates --;5.7.3.Comparison of two SERs --;5.7.4.Mantel-Haenszel methods --;5.7.5.Further comments --;5.8.Period-cohort analysis --;5.8.1.Period-specific rates --;Exercises --;6.1.Basic design concepts --;6.1.1.Advantages --;6.1.2.Disadvantages --;6.2.Basic methods of analysis --;6.2.1.Dichotomous exposure --;6.2.2.Polytomous exposure --;6.2.3.Confounding and interaction --;6.2.4.Attributable risk --;6.3.Selection of cases Note continued: 6.3.1.Definition --;6.3.2.Inclusion and exclusion criteria --;6.3.3.Incident or prevalent? --;6.3.4.Source --;6.3.5.Consideration of bias --;6.4.Selection of controls --;6.4.1.General principles --;6.4.2.Hospital controls --;6.4.3.Community controls --;6.4.4.Other sources --;6.4.5.How many? --;6.5.Matching --;6.5.1.Advantages --;6.5.2.Disadvantages --;6.5.3.One-to-many matching --;6.5.4.Matching in other study designs --;6.6.The analysis of matched studies --;6.6.1.1 : 1 Matching --;6.6.2.1 : c Matching --;6.6.3.1 : Variable matching --;6.6.4.Many: many matching --;6.6.5.A modelling approach --;6.7.Nested case-control studies --;6.7.1.Matched studies --;6.7.2.Counter-matched studies --;6.8.Case-cohort studies --;6.9.Case-crossover studies --;Exercises --;7.1.Introduction --;7.1.1.Advantages --;7.1.2.Disadvantages --;7.2.Ethical considerations --;7.2.1.The protocol --;7.3.Avoidance of bias --;7.3.1.Use of a control group --;7.3.2.Blindness Note continued: 7.3.3.Randomisation --;7.3.4.Consent before randomisation --;7.3.5.Analysis by intention-to-treat --;7.4.Parallel group studies --;7.4.1.Number needed to treat --;7.4.2.Cluster randomised trials --;7.4.3.Stepped wedge trials --;7.4.4.Non-inferiority trials --;7.5.Cross-over studies --;7.5.1.Graphical analysis --;7.5.2.Comparing means --;7.5.3.Analysing preferences --;7.5.4.Analysing binary data --;7.6.Sequential studies --;7.6.1.The Haybittle-Peto stopping rule --;7.6.2.Adaptive designs --;7.7.Allocation to treatment group --;7.7.1.Global randomisation --;7.7.2.Stratified randomization --;7.7.3.Implementation --;7.8.Trials as cohorts --;Exercises --;8.1.Introduction --;8.2.Power --;8.2.1.Choice of alternative hypothesis --;8.3.Testing a mean value --;8.3.1.Common choices for power and significance level --;8.3.2.Using a table of sample sizes --;8.3.3.The minimum detectable difference --;8.3.4.The assumption of known standard deviation Note continued: 8.4.Testing a difference between means --;8.4.1.Using a table of sample sizes --;8.4.2.Power and minimum detectable difference --;8.4.3.Optimum distribution of the sample --;8.4.4.Paired data --;8.5.Testing a proportion --;8.5.1.Using a table of sample sizes --;8.6.Testing a relative risk --;8.6.1.Using a table of sample sizes --;8.6.2.Power and minimum detectable relative risk --;8.7.Case-control studies --;8.7.1.Using a table of sample sizes --;8.7.2.Power and minimum detectable relative risk --;8.7.3.Comparison with cohort studies --;8.7.4.Matched studies --;8.8.Complex sampling designs --;8.9.Concluding remarks --;Exercises --;9.1.Statistical models --;9.2.One categorical explanatory variable --;9.2.1.The hypotheses to be tested --;9.2.2.Construction of the ANOVA table --;9.2.3.How the ANOVA table is used --;9.2.4.Estimation of group means --;9.2.5.Comparison of group means --;9.2.6.Fitted values --;9.2.7.Using computer packages Note continued: 9.3.One quantitative explanatory variable --;9.3.1.Simple linear regression --;9.3.2.Correlation --;9.3.3.Nonlinear regression --;9.4.Two categorical explanatory variables --;9.4.1.Model specification --;9.4.2.Model fitting --;9.4.3.Balanced
TOPICAL NAME USED AS SUBJECT
Epidemiology -- Statistical methods.
PERSONAL NAME - PRIMARY RESPONSIBILITY
Mark Woodward, Professor of Statistics and Epidemiology, University of Oxford, UK, Professor of Biostatistics, The George Institute for Global Health, University of Sydney, Australia, Adjunct Professor of Epidemiology, Johns Hopkins University, USA.