یادداشتهای مربوط به کتابنامه ، واژه نامه و نمایه های داخل اثر
متن يادداشت
Includes bibliographical references and index.
یادداشتهای مربوط به مندرجات
متن يادداشت
"This text provides the fundamental concepts and techniques of real analysis for students in all of these areas. It helps one develop the ability to think deductively, analyse mathematical situations and extend ideas to a new context. Like the first three editions, this edition maintains the same spirit and user-friendly approach with addition examples and expansion on Logical Operations and Set Theory. There is also content revision in the following areas: introducing point-set topology before discussing continuity, including a more thorough discussion of limsup and limimf, covering series directly following sequences, adding coverage of Lebesgue Integral and the construction of the reals, and drawing student attention to possible applications wherever possible"--Provided by publisher.
متن يادداشت
Ch. 1.Preliminaries: 1.1. Sets and functions; 1.2. Mathematical induction; 1.3. Finite and infinite sets -- Ch. 2. The Real Numbers: 2.1. The algebraic and order properties of R; 2.2. Absolute value and real line; 2.3. The completeness property of R; 2.4. Applications of the supremum property; 2.5. Intervals -- Ch. 3. Sequences and series: 3.1. Sequences and their limits; 3.2. Limit theorems; 3.3. Monotone sequences; 3.4. Subsequences and the Bolzano-Weierstrass theorem; 3.5. The Cauchy criterion; 3.6. Properly divergent sequences; 3.7. Introduction to infinite series -- Ch. 4. Limits: 4.1. Limits of functions; 4.2. Limit theorems; 4.3. Some extensions of the limit concept -- Ch. 5. Continuous functions: 5.1. Continuous runctions; 5.2 . Combinations of continuous runctions; 5.3. Continuous functions on intervals; 5.4. Uniform continuity; 5.5. Continuity and gauges; 5.6. Monotone and inverse functions -- Ch. 6. Differentiation: 6.1. The derivative; 6.2. The mean value theorem; 6.3. L'Hospital's rules; 6.4. Taylor's Theorem -- Ch. 7. The Riemann integral: 7.1. Riemann integral; 7.2. Riemann integrable functions; 7.3. The fundamental theorem; 7.4. The Darboux integral; 7.5. Approximate integration -- Ch. 8. Sequences of functions: 8.1. Pointwise and uniform convergence; 8.2. Interchange of limits; 8.3. The exponential and logarithmic functions; 8.4. The trigonometric functions -- Ch. 9. Infinite series: 9.1. Absolute convergence; 9.2. Tests for absolute convergence; 9.3. Tests for nonabsolute convergence; 9.4. Series of functions -- Ch. 10. The generalized Riemann integral: 10.1. Definition and main poperties; 10.2. Improper and Lebesgue integrals; 10.3. Infinite intervals; 10.4. Convergence theorems -- Ch. 11. A glimpse into topology: 11.1. Open and closed sets in R; 11.2 Compact sets; 11.3. Continuous functions; 11.4. Metrtic Spaces -- Appendix A. Logic and proofs -- Appendix B. Finite and countable sets -- Appendix C. The Riemann and Lebesgue criteria -- Appendix D. Approximate integration -- Appendix E. Two examples.
موضوع (اسم عام یاعبارت اسمی عام)
موضوع مستند نشده
Mathematical analysis
موضوع مستند نشده
Functions of real variables
رده بندی ديویی
شماره
515
رده بندی کنگره
شماره رده
QA300
نشانه اثر
.
B294
2011
نام شخص به منزله سر شناسه - (مسئولیت معنوی درجه اول )