Index Theory for Toeplitz Operators on Algebraic Spaces
نام عام مواد
[Thesis]
نام نخستين پديدآور
Jabbari, Mohammad
نام ساير پديدآوران
Tang, Xiang
وضعیت نشر و پخش و غیره
نام ناشر، پخش کننده و غيره
Washington University in St. Louis
تاریخ نشرو بخش و غیره
2019
مشخصات ظاهری
نام خاص و کميت اثر
91
یادداشتهای مربوط به پایان نامه ها
جزئيات پايان نامه و نوع درجه آن
Ph.D.
کسي که مدرک را اعطا کرده
Washington University in St. Louis
امتياز متن
2019
یادداشتهای مربوط به خلاصه یا چکیده
متن يادداشت
This dissertation is about the abstract Toeplitz operators obtained by compressing the multishifts of the usual Hilbert spaces of analytic functions onto co-invariant subspaces generated by polynomial functions. These operators were introduced by Arveson in regard to his multivariate dilation theory for spherical contractions. The main technical issue here is essential normality, addressed in Arveson's conjecture. If this conjecture holds true then the fundamental tuple of Toeplitz operators associated to a polynomial ideal I can be thought as noncommutative coordinate functions on the variety defined by I intersected with the boundary of the unit ball. This interpretation suggests operator-theoretic techniques to study certain algebraic spaces. More specifically, we are interested in Douglas' index problem. In the special case of monomial ideals we give a new proof for Arveson's essential normality conjecture, also answer Douglas' index problem. Our main construction is a certain resolution (in the sense of homological algebra) of Hilbert modules. Finally, Thinking of the fundamental tuple of Toeplitz operators as noncommutative coordinate functions, we start applying them to study the isolated singularities of algebraic hypersurfaces. The main extra operator-theoretic ingredient here is a unitary operator, the holonomy of a certain Gauss-Manin connection induced by the monodromy of the singularity. We want to understand how this unitary operator interacts with the Toeplitz operators. This study could lead to an analytic way for detecting exotic smooth structures on odd-dimensional spheres.
موضوع (اسم عام یاعبارت اسمی عام)
موضوع مستند نشده
Mathematics
نام شخص به منزله سر شناسه - (مسئولیت معنوی درجه اول )