Estimation of Annual Average Daily Traffic (AADT) and missing hourly volume using artificial intelligence
نام عام مواد
[Thesis]
نام نخستين پديدآور
Sababa Islam
نام ساير پديدآوران
Chowdhury, Mashrur
وضعیت نشر و پخش و غیره
نام ناشر، پخش کننده و غيره
Clemson University
تاریخ نشرو بخش و غیره
2016
مشخصات ظاهری
نام خاص و کميت اثر
135
يادداشت کلی
متن يادداشت
Committee members: Luo, Feng; Sarasua, Wayne
یادداشتهای مربوط به نشر، بخش و غیره
متن يادداشت
Place of publication: United States, Ann Arbor; ISBN=978-1-369-55077-1
یادداشتهای مربوط به پایان نامه ها
جزئيات پايان نامه و نوع درجه آن
M.Engr.
نظم درجات
Civil Engineering
کسي که مدرک را اعطا کرده
Clemson University
امتياز متن
2016
یادداشتهای مربوط به خلاصه یا چکیده
متن يادداشت
Annual Average Daily Traffic (AADT) is one of the most important traffic parameters used in transportation engineering analysis. Moreover, each state Department of Transportation (DOT) must report the AADT data to Federal Highway Administration (FHWA) annually as part of the Highway Performance Monitoring System (HPMS) requirements. For this reason, state DOTs continually collect AADT data via permanent count stations and short-term counts. In South Carolina, only interstates and primary routes are equipped with permanent count stations. For the majority of the secondary routes, AADT data are estimated based on short-term counts or are simply guesstimated based on their functional classifications. In this study the use of Artificial Neural Network (ANN) and Support Vector Regression (SVR) were applied to estimate AADT from short-term counts. The results were compared to the traditional factor method used by South Carolina Department of Transportation (SCDOT) and also to the Ordinary Least-square Regression method. The comparison between ANN and SVR revealed that SVR functions better than ANN in making AADT estimation for different functional classes. A second comparison was conducted between SVR and the traditional factor method. The comparative analysis revealed that SVR performed better that the traditional factor method. Similarly, the comparison between SVR and regression analysis for the principal arterials revealed no significant difference in the actual AADT and the AADT estimated through SVR. However, it did show a significant difference between the actual AADT and AADT estimated through regression analysis.
موضوع (اسم عام یاعبارت اسمی عام)
موضوع مستند نشده
Civil engineering; Transportation planning
اصطلاحهای موضوعی کنترل نشده
اصطلاح موضوعی
Social sciences;Applied sciences
نام شخص به منزله سر شناسه - (مسئولیت معنوی درجه اول )