یادداشتهای مربوط به کتابنامه ، واژه نامه و نمایه های داخل اثر
متن يادداشت
Includes bibliographical references (pages [169]-173) and index
یادداشتهای مربوط به مندرجات
متن يادداشت
A survey of sphere theorems in geometry -- Hamilton's Ricci flow -- Interior estimates -- Ricci flow on S2 -- Pointwise curvature estimates -- Curvature pinching in dimension 3 -- Preserved curvature conditions in higher dimensions -- Convergence results in higher dimensions -- Rigidity results
بدون عنوان
0
یادداشتهای مربوط به خلاصه یا چکیده
متن يادداشت
"In 1982, R. Hamilton introduced a nonlinear evolution equation for Riemannian metrics with the aim of finding canonical metrics on manifolds. This evolution equation is known as the Ricci flow, and it has since been used widely and with great success, most notably in Perelman's solution of the Poincare conjecture. Furthermore, various convergence theorems have been established. This book provides a concise introduction to the subject as well as a comprehensive account of the convergence theory for the Ricci flow. The proofs rely mostly on maximum principle arguments. Special emphasis is placed on preserved curvature conditions, such as positive isotropic curvature. One of the major consequences of this theory is the Differentiable Sphere Theorem: a compact Riemannian manifold, whose sectional curvatures all lie in the interval (1,4], is diffeomorphic to a spherical space form. This question has a long history, dating back to a seminal paper by H. E. Rauch in 1951, and it was resolved in 2007 by the author and Richard Schoen."--Publisher's description
موضوع (اسم عام یاعبارت اسمی عام)
موضوع مستند نشده
Ricci flow
موضوع مستند نشده
Sphere
رده بندی ديویی
شماره
516
.
3/62
ويراست
22
رده بندی کنگره
شماره رده
QA377
.
3
نشانه اثر
.
B74
2010
نام شخص به منزله سر شناسه - (مسئولیت معنوی درجه اول )