1.The setting -- 2. Overture: Ramsey's theorem -- 3. The axioms of Zermelo-Fraenkel set theory -- 4. Cardinal relations in ZF only -- 5. The axiom of choice -- 6. How to make two balls from one -- 7. Models of set theory with atoms -- 8. Twelve cardinals and their relations -- 9. The shattering number revisited -- 10. Happy families and their relatives -- 11. Coda: a dual form of Ramsey's theorem -- 12. The idea of forcing -- 13. Martin's axiom -- 14. The notion of forcing -- 15. Models of finite fragments of set theory -- 16. Proving unprovability -- 17. Models in which AC fails -- 18. Combining forcing notions -- 19. Models in which p=c -- 20. Properties of forcing extensions -- 21. Cohen forcing revisited -- 22. Silver-like forcing notions -- 23. Miller forcing -- 24. Mathias forcing -- 25. On the existence of Ramsey ultrafilters -- 26. Combinatorial properties of sets of partitions -- 27. Suite.