Contents -- Foreword -- Preface -- Synopsis -- 1. A Nonabsolute Integral on Measure Spaces -- 1.1 Preliminaries -- 1.2 Existence of a Division and the H-Integral -- 1.3 Simple Properties of the H-Integral -- 2. The Absolute H-Integral and the McShane-Type Integrals -- 2.1 The Absolute H-Integral and the M-Integral -- 2.2 The H-Integral and the Lebesgue Integral -- 2.3 The Davies Integral and the Daviesâ#x80;#x93;McShane Integral -- 3. Further Results of the H-Integral -- 3.1 A Necessary and Sufficient Condition for H-Integrability
3.2 Generalised Absolute Continuity and Equiintegrability3.3 The Controlled Convergence Theorem -- 4. The Radonâ#x80;#x93;Nikodym Theorem for the H-Integral -- 4.1 The Main Theorem -- 4.2 Descriptive Definition of the H-Integral -- 4.3 Henstock Integration in the Euclidean Space -- 5. Harnack Extension and Convergence Theorems for the H-Integral -- 5.1 The H-Integral on Metric Spaces -- 5.2 Harnack Extension for the H-Integral -- 5.3 The Category Argument -- 5.4 An Improved Version of the Controlled Convergence Theorem -- Bibliography -- Glossary