Course no. 1452.Transcript covers the 24 lectures contained in the corresponding DVDs.
Lecture 1. What is a differential equation? --; Lecture 2. A limited-growth population model --; Lecture 3. Classification of equilibrium points --; Lecture 4. Bifurcations, drastic changes in solutions --; Lecture 5. Methods for finding explicit solutions --; Lecture 6. How computers solve differential equations --; Lecture 7. Systems of equations, a predator-prey system --; Lecture 8. Second-order equations, the mass-spring system --; Lecture 9. Damped and undamped harmonic oscillators --; Lecture 10. Beating modes and resonance of oscillators --; Lecture 11. Linear systems of differential equations --; Lecture 12. An excursion into linear algebra --; Lecture 13. Visualizing complex and zero eigenvalues --; Lecture 14. Summarizing all possible linear solutions --; Lecture 15. Nonlinear systems viewed globally, nullclines --; Lectures 16. Nonlinear systems near equilibria, linearization --; Lecture 17. Bifurcations in a competing species model --; Lecture 18. Limit cycles and oscillations in chemistry --; Lecture 19. All sorts of nonlinear pendulums --; Lecture 20. Periodic forcing and how chaos occurs --; Lecture 21. Understanding chaos and iterated functions --; Lecture 22. Periods and ordering of iterated functions --; Lecture 23. Chaotic itineraries in a space of all sequences --; Lecture 24. Conquering chaos, Mandelbrot and Julia sets.
In this course, Boston University Professor Robert L. Devaney presents an introduction to differential equations.