Non-classical Logics and Their Applications to Fuzzy Subsets A Handbook of the Mathematical Foundations of Fuzzy Set Theory.
[Book]
Hh̲le, Ulrich; Klement, Erich Peter
Springer Verlag
2013
Preface. Introduction. Part A: Algebraic Foundations of Non-Classical Logics. I. alpha-Complete MV-algebras; L.P. Belluce. II. On MV-algebras of continuous functions; A. Di Nola, S. Sessa. III. Free and projective Heyting and monadic Heyting algebras; R. Grigolia. IV. Commutative, residuated l-monoids; U. Hoehle. V. A proof of the completeness of the infinite-valued calculus of Lukasiewicz with one variable; D. Mundici, M. Pasquetto. Part B: Non-Classical Models and Topos-Like Categories. VI. Presheaves over GL-monoids; U. Hoehle. VII. Quantales: Quantal sets; C.J. Mulvey, M. Nawaz. VIII. Categories of fuzzy sets with values in a quantale or projectale; L.N. Stout. IX. Fuzzy logic and categories of fuzzy sets; O. Wyler. Part C: General Aspects of Non-Classical Logics. X. Prolog extensions to many-valued logics; F. Klawonn. XI. Epistemological aspects of many-valued logics and fuzzy structures; L.J. Kohout. XII. Ultraproduct theorem and recursive properties of fuzzy logic; V. Novak. Bibliography. Index.