1.0 Vectors in the line -- 2.0 The geometry of vectors in the plane -- 2.1 Transformations of the plane -- 2.2 Linear transformations and matrices -- 2.3 Sums and products of linear transformations -- 2.4 Inverses and systems of equations -- 2.5 Determinants -- 2.6 Eigenvalues -- 2.7 Classification of conic sections -- 3.0 Vector geometry in 3-space -- 3.1 Transformations of 3-space -- 3.2 Linear transformations and matrices -- 3.3 Sums and products of linear transformations -- 3.4 Inverses and systems of equations -- 3.5 Determinants -- 3.6 Eigenvalues -- 3.7 Symmetric matrices -- 3.8 Classification of quadric surfaces -- 4.0 Vector geometry in n-space, n>=4 -- 4.1 Transformations of n-space, n>=4 -- 4.2 Linear transformations and matrices -- 4.3 Homogeneous systems of equations in n-space -- 4.4 Inhomogeneous systems of equations in n-space -- 5.0 Vector spaces -- 5.1 Bases and dimensions -- 5.2 Existence and uniqueness of solutions -- 5.3 The matrix relative to a given basis -- 6.0 Vector spaces with an inner product -- 6.1 Orthonormal bases -- 6.2 Orthogonal decomposition of a vector space -- 7.0 Symmetric matrices in n dimensions -- 7.1 Quadratic forms in n variables -- 8.0 Differential systems -- 8.1 Least squares approximation -- 8.2 Curvature of function graphs