CRC series in computational mechanics and applied analysis
Includes bibliographical references (pages 1081-1085) and index
Equilibrium -- 9.4.1.General Criteria for Any Solution -- 9.4.2.Ideal Solution and Raoult's Law -- 9.4.2.1.Vapor as Real Gas Mixture -- 9.4.2.2.Vapor as Ideal Gas Mixture -- 9.5.Pressure and Temperature Diagrams -- 9.5.1.Completely Miscible Mixtures -- 9.5.1.1.Liquid[--]Vapor Mixtures -- 9.5.2.Immiscible Mixture -- 9.5.2.1.Immiscible Liquids and Miscible Gas Phase -- 9.5.2.2.Miscible Liquids and Immiscible Solid Phase -- 9.5.3.Partially Miscible Liquids -- 9.5.3.1.Liquid and Gas Mixtures -- 9.5.3.2.Liquid and Solid Mixtures -- 9.6.Dissolved Gases in Liquids -- 9.6.1.Single Component Gas -- 9.6.2.Mixture of Gases and Liquids -- 9.6.3.Approximate Solution[--]Henry's Law -- 9.7.Deviations from Raoult's Law -- 9.7.1.Evaluation of the Activity Coefficient -- 9.8.Summary -- 9.9.Appendix -- 9.9.1.Phase Rule for Single Component -- 9.9.1.1.Single Phase -- 9.9.1.2.Two Phases -- 9.9.1.3.Three Phases -- 9.9.1.4.Theory -- 9.9.2.General. Phase Rule for Multicomponent Fluids -- 9.9.3.Raoult's Law for the Vapor Phase of a Real Gas -- Objectives -- 10.1.Introduction -- 10.2.Criteria for an Isolated System -- 10.3.Mathematical Criterion for Stability -- 10.3.1.Perturbation of Volume -- 10.3.1.1.Geometrical Criterion -- 10.3.1.2.Differential Criterion -- 10.3.2.Perturbation of Energy -- 10.3.3.Perturbation with Energy and Volume -- 10.3.3.1.Single Component -- 10.3.3.2.Multicomponent Mixture -- 10.3.4.System with Specified Values of S, V, and m -- 10.3.5.Perturbation in Entropy at Specified Volumes -- 10.3.6.Perturbation in Entropy and Volume -- 10.3.6.1.Binary and Multicomponent Mixtures -- 10.3.7.System with Specified Values of S, P, and m -- 10.3.8.System with Specified Values of T, V, and m -- 10.3.8.1.Perturbations with Respect to Volume -- 10.3.8.2.Perturbations with Respect to Temperature -- 10.3.8.3.Perturbations with Respect to Volume and Temperature --
Note continued: 10.3.8.4.Binary and Multicomponent Mixtures -- 10.3.9.System with Specified Values of T, P, and m -- 10.3.9.1.Perturbations with Respect to Pressure -- 10.3.9.2.Perturbation with Respect to Temperature -- 10.3.9.3.Perturbations with Respect to P and T -- 10.3.9.4.Multicomponent Systems -- 10.4.Application to Boiling and Condensation -- 10.4.1.Constant T and P -- 10.4.2.Constant Temperature and Volume -- 10.4.3.Specified Values of S, P, and m -- 10.4.4.Specified Values of S (or U), V, and m -- 10.5.Entropy Generation during Irreversible Transformation -- 10.6.Spinodal Curves -- 10.6.1.Single Component -- 10.6.2.Internal Energy along Spinodal Curve -- 10.6.3.Multicomponent Mixtures -- 10.7.Determination of Vapor Bubble and Drop Sizes -- 10.8.Summary -- Objectives -- 11.1.Introduction -- 11.2.Chemical Reactions and Combustion -- 11.2.1.Stoichiometric or Theoretical Reaction -- 11.2.2.Reaction with Excess Air (Lean Combustion) -- 11.2.3.Reaction with Excess Fuel (Rich Combustion) -- 11.2.4.Equivalence Ratio, Stoichiometric Ratio -- 11.2.5.Gas Analysis -- 11.3.Thermochemistry -- 11.3.1.Enthalpy of Formation (Chemical Enthalpy) -- 11.3.2.Thermal or Sensible Enthalpy -- 11.3.3.Total Enthalpy -- 11.3.4.Enthalpy of Reaction -- 11.3.5.Entropy, Gibbs Function, and Gibbs Function of Formation -- 11.4.First Law Analyses for Chemically Reacting Systems -- 11.4.1.First Law -- 11.4.2.Adiabatic Flame Temperature -- 11.4.2.1.Steady-State, Steady-Flow Processes in Open Systems -- 11.4.2.2.Closed Systems -- 11.4.2.3.Explicit Relation for Adiabatic Flame Temperature with Constant Specific Heats -- 11.5.Combustion Analyses in the Case of Nonideal Behavior -- 11.5.1.Pure Component -- 11.5.2.Mixture -- 11.6.Second Law Analysis of Chemically Reacting Systems -- 11.6.1.Entropy Generated during an Adiabatic Chemical Reaction -- 11.6.2.Entropy Generated during an Isothermal Chemical Reaction -- 11.7.Mass Conservation and Mole Balance Equations -- 11.7.1.Nonsteady System -- 11.7.2.Steady State System -- 11.8.Overview on Energy Consumption and Combustion -- 11.9.Summary -- Objectives -- 12.1.Introduction -- 12.2.Reaction Direction and Chemical Equilibrium -- 12.2.1.Direction of Heat Transfer -- 12.2.2.Direction of Reaction -- 12.2.3.Evaluation of Properties during an Irreversible Chemical Reaction -- 12.3.Criteria for Direction of Reaction for Fixed-Mass System -- 12.3.1.General Criteria -- 12.3.2.Criteria in Terms of Chemical Force Potential and Affinity(Af) for Single Reaction -- 12.3.2.1.Force Potential -- 12.3.2.2.Affinity -- 12.3.2.3.Criteria in Terms of Equilibrium Constant K°(T) for Ideal Gas Mixtures for Single Reaction -- 12.3.3.Criteria for Multiple Reactions -- 12.3.4.An Approximate Criterion for Direction of Reactions -- 12.3.5.Evaluation of andDelta;G° in Terms of Elementary Reactions -- 12.4.Generalized Chemical Equilibrium Relations -- 12.4.1.Generalized Relation for the Chemical Potential for any Substance -- 12.4.2.Nonideal Mixtures and Solutions -- 12.4.2.1.Standard State of an Ideal Gas at 1 Bar -- 12.4.2.2.Standard State of a Nonideal Gas at 1 Bar -- 12.4.3.Reactions Involving Ideal Mixtures of Liquids and Solids -- 12.4.4.Ideal Mixture of Real Gases -- 12.4.5.Ideal Gases -- 12.4.6.Gas, Liquid, and Solid Mixtures -- 12.5.Van't Hoff Equation -- 12.5.1.Effect of Temperature on K°(T) -- 12.5.2.Effect of Pressure -- 12.6.Equilibrium for Multiple Reactions -- 12.7.Adiabatic Flame Temperature with Chemical Equilibrium -- 12.8.Gibbs Minimization Method -- 12.8.1.General Criteria for Equilibrium -- 12.8.2.Multiple Components -- 12.9.Summary -- 12.10.Appendix: Equilibrium Constant for any Reaction in Terms of Equilibrium Constants of Elements -- Objectives -- 13.1.Introduction -- 13.2.Entropy Generation through Chemical Reactions -- 13.3.Availability -- 13.3.1.General Availability Balance Equation for Combustion -- 13.3.2.Availability Balance Equation for Steady-State Nonreservoir Open Combustion Systems -- 13.3.2.1.Power Plant Work -- 13.3.2.2.Combustor -- 13.3.2.3.Isothermal Combustor -- 13.3.3.Availability Balance Equation for Closed Combustion Systems -- 13.3.4.Availability Balance for Adiabatic Systems -- 13.3.5.Energy and Exergy of a Power Plant -- 13.3.6.Maximum Work Using Heat Exchanger and Adiabatic Combustor -- 13.3.6.1.Fixed TL,CE and Tad -- 13.3.6.2.Varying cpo(T) or "Hot" Gas Assumption -- 13.3.6.3.Constant cpo(T) or "Cold" Gas Assumption -- 13.3.6.4.Fixed Hot Gas Temperature TH and TL -- 13.3.7.Availability Balance for Isothermal Reactors -- 13.3.8.Batteries -- 13.4.Fuel Cells -- 13.4.1.Oxidation States and Electrons -- 13.4.2.H2-O2 Fuel Cell -- 13.4.3.Fuel Cells with Other Fuels -- 13.4.4.Physical Meaning of Irreversibility during Adiabatic Combustion -- 13.5.Fuel Availability -- 13.5.1.Complete Combustion -- 13.5.1.1.Optimum Work -- 13.5.1.2.Ratio of Fuel Availability to LHV -- 13.5.1.3.Exergetic Efficiency -- 13.5.1.4.Ratio of Irreversibility to Stoichiometric Oxygen of any Fuel -- 13.5.2.Incomplete Combustion -- 13.6.IC Engines and Exergy -- 13.7.Summary -- Objectives -- 14.1.Introduction -- 14.2.Biomass Processing -- 14.2.1.Digestion, Nutrients, and Product Transfer -- 14.2.2.Energy Conversion -- 14.2.2.1.Basal Metabolic Rate (BMR, qBMR) -- 14.2.2.2.ATP (C10H16N5O13P3), ADP (C10H16N5O10P2), and AMP -- 14.3.Food and Nutrients -- 14.3.1.Thermochemical Properties of Nutrients -- 14.3.1.1.Empirical Equations for Heat Values -- 14.3.2.Metabolism of Nutrients -- 14.3.2.1.Glucose (CH) -- 14.3.2.2.Fats (F) -- 14.3.2.3.Proteins (P) -- 14.3.3.Mixture of CH, F, and P -- 14.3.3.1.Mixture of CH and F -- 14.3.3.2.Mixture of CH, F, and P -- 14.4.Human Body -- 14.4.1.Formulae -- 14.4.2.Food Consumption and CO2 -- 14.5.Metabolism -- 14.5.1.Daily Energy Expenditure (DEE) and Energy for Physical Activity -- 14.5.2.Efficiencies -- 14.5.2.1.Digestive Efficiency (ηdig) -- 14.5.2.2.The Metabolized Energy Coefficient (ηMEC) -- 14.5.2.3.Metabolic Efficiency (ηmet)) -- 14.5.2.4.ATP to ADP and AMP Conversions -- 14.5.2.5.Muscular Work Efficiency (ηmusc) -- 14.5.2.6.Overall Efficiency (ηoverall) -- 14.5.3.BMR Estimation -- 14.5.3.1.Simple Method -- 14.5.3.2.BMR Estimation Formulas -- 14.5.4.Energy Requirements -- 14.6.Thermochemistry of Metabolism in BS -- 14.6.1.Air:Fuel Ratio -- 14.6.2.Nasal Gas Analyses and Fuel Burned -- 14.6.2.1.Fuel Composition -- 14.6.3.Mass Conservation -- 14.6.3.1.Mass -- 14.6.4.Energy Conservation -- 14.6.5.First Law and Relation between Metabolic Rate and Size -- 14.6.5.1.Specific Metabolism -- 14.6.5.2.Effect of Body Size -- 14.7.Heat Transfer Analysis from the Body -- 14.7.1.Conduction -- 14.7.2.Convection -- 14.7.3.Radiation -- 14.7.3.1.Wadden and Scheff Equation -- 14.7.4.Respiration -- 14.7.5.Evaporation of Body Water -- 14.7.5.1.Evaporation Models -- 14.7.6.Overall Heat Loss -- 14.8.Body Temperature and Warm and Cold Blooded Animals -- 14.8.1.Temperature Regulation -- 14.8.2.Warm- and Cold-Blooded Animals -- 14.8.3.Kinetics -- 14.8.4.Fever -- 14.8.4.1.Model -- 14.8.4.2.Results -- 14.9.Second Law and Entropy Generation in BS -- 14.9.1.Second Law -- 14.9.2.Entropy Generation -- 14.10.Entropy Generation through Chemical Reactions -- 14.10.1.Entropy Balance Equation -- 14.10.2.Availability Balance Equation, Availability and Metabolic Efficiencies -- 14.11.Life Span and Entropy -- 14.11.1.Energy, Entropy, and Biology -- 14.11.2.Energy Hypothesis or Rate of Living Theory (ROL) -- 14.11.3.Entropy Hypothesis -- 14.11.4.Phenomenological Analyses -- 14.11.4.1.Energy Hypothesis -- 14.11.4.2.Entropy Hypothesis -- 14.11.5.Entropy Generation and Life Span -- 14.12.Allometry -- 14.12.1.Introduction -- 14.12.2.Allometry Laws -- 14.12.3.Allometry Laws: Simplified Analysis for the Scaling Laws -- 14.13.Summary
Note continued: 4.7.Integral and Differential Forms of Availability Balance -- 4.7.1.Integral Form -- 4.7.2.Differential Form -- 4.7.3.Some Applications -- 4.8.Summary -- Objectives -- 5.1.Introduction -- 5.2.Classical Rationale for Postulatory Approach -- 5.3.Simple Compressible Substance -- 5.4.Legendre Transform -- 5.4.1.Simple Legendre Transform -- 5.4.2.Relevance to Thermodynamics -- 5.4.3.Generalized Legendre Transform -- 5.5.Application of Legendre Transform -- 5.6.Work Modes and Generalized State Relation -- 5.6.1.Electrical Work -- 5.6.2.Elastic Work -- 5.6.3.Surface Tension Effects -- 5.6.4.Torsional Work -- 5.6.5.Work Involving Gravitational Field -- 5.6.6.Generalized State Relation -- 5.7.Thermodynamic Postulates for Simple Systems -- 5.7.1.Postulate I -- 5.7.2.Postulate II -- 5.7.3.Postulate III -- 5.7.4.Postulate IV -- 5.8.Fundamental Equations in Thermodynamics -- 5.8.1.Entropy -- 5.8.2.Energy -- 5.8.3.Intensive and Extensive Properties -- 5.9.Summary -- Objectives -- 6.1.Introduction -- 6.2.Equations of State -- 6.3.Virial Equations -- 6.3.1.Exact Virial Equation -- 6.3.2.Approximate Virial Equation -- 6.4.Clausius-I Equation of State -- 6.5.VW Equation of State -- 6.6.Redlich[-]Kwong Equation of State -- 6.7.Other Two-Parameter Equations of State -- 6.8.Compressibility Charts (Principle of Corresponding States) -- 6.9.Boyle Temperature and Boyle Curves -- 6.9.1.Boyle Temperature -- 6.9.2.Boyle Curve -- 6.10.Deviation Function -- 6.11.Three Parameter Equations of State -- 6.11.1.Critical Compressibility Factor (Zc)-Based Equations -- 6.11.2.Pitzer Factor -- 6.11.2.1.Definition -- 6.11.2.2.Evaluation of Pitzer Factor, andomega; -- 6.11.3.Other Three Parameter Equations of State -- 6.11.3.1.One Parameter Approximate Virial Equation -- 6.11.3.2.Redlich[-]Kwong[-]Soave (RKS or SRK) Equation -- 6.11.3.3.Robinson (PR) Equation -- 6.12.Generalized Equation of State -- 6.13.Empirical Equations of State -- 6.13.1.Benedict[-]Webb[-]Rubin Equation -- 6.13.2.Beatie[-]Bridgemann (BB) Equation of State -- 6.13.3.Modified BWR Equation -- 6.13.4.Lee[-]Kesler Equation of State -- 6.13.5.Martin[-]Hou -- 6.14.State Equations for Liquids/Solids -- 6.14.1.Generalized State Equation -- 6.14.2.Murnaghan Equation of State -- 6.14.3.Racket Equation for Saturated Liquids -- 6.14.4.Relation for Densities of Saturated Liquids and Vapors -- 6.14.5.Lyderson Charts (for Liquids) -- 6.14.6.Incompressible Approximation -- 6.15.Summary -- 6.16.Appendix -- 6.16.1.Cubic Equation -- 6.16.1.1.Case I: andgamma; > 0 -- 6.16.1.2.Case II: andgamma; < 0 -- 6.16.2.Another Explanation for the Attractive Force -- 6.16.3.Critical Temperature and Attraction Force Constant -- Objectives -- 7.1.Introduction -- 7.2.Ideal Gas Properties -- 7.3.James Clark Maxwell, 1831-1879 Relations -- 7.3.1.First Maxwell Relation -- 7.3.2.Second Maxwell Relation -- 7.3.3.Third Maxwell Relation -- 7.3.4.Fourth Maxwell Relation -- 7.3.5.Summary of Relations -- 7.4.Generalized Relations -- 7.4.1.Entropy (ds) Relation -- 7.4.1.1.First "ds" Relation -- 7.4.1.2.Second "ds" Relation -- 7.4.1.3.Third "ds" Relation -- 7.4.2.Internal Energy (du) Relation -- 7.4.3.Enthalpy (dh) Relation -- 7.4.4.Relation for (cp[--]cv) -- 7.4.5.Internal Energy and Entropy of Photons -- 7.5.Evaluation of Thermodynamic Properties -- 7.5.1.Helmholtz Function -- 7.5.2.Entropy -- 7.5.3.Pressure -- 7.5.4.Internal Energy -- 7.5.5.Enthalpy -- 7.5.6.Gibbs Free Energy or Chemical Potential -- 7.5.7.Fugacity Coefficient -- 7.6.Pitzer Effect -- 7.7.Kesler Equation of State (KES) and Kesler Tables -- 7.8.Fugacity -- 7.8.1.Fugacity Coefficient -- 7.8.1.1.RK Equation -- 7.8.1.2.Generalized State Equation -- 7.8.2.Physical Meaning -- 7.8.3.Phase Equilibrium -- 7.8.4.Subcooled and Superheated Liquid -- 7.8.5.Subcooled Vapor -- 7.9.Experiments to Measure (uo [--] u) -- 7.10.Vapor/Liquid Equilibrium Curve -- 7.10.1.Minimization of Potentials -- 7.10.1.1.Helmholtz Free Energy A at Specified T, V, and in -- 7.10.1.2.G at Specified T, P, and m -- 7.10.2.Real Gas Equations -- 7.10.2.1.Graphical Solution -- 7.10.2.2.Approximate Solution -- 7.10.3.Heat of Vaporization -- 7.10.4.Vapor Pressure and the Clapeyron Equation -- 7.10.4.1.Vaporization -- 7.10.4.2.Melting -- 7.10.4.3.Sublimation -- 7.10.5.Empirical Relations -- 7.10.5.1.Saturation Pressures -- 7.10.5.2.Enthalpy of Vaporization -- 7.10.6.Saturation Relations with Surface Tension Effects -- 7.10.7.Pitzer Factor from Saturation Relations -- 7.11.Throttling Processes -- 7.11.1.Joule[--]Thomson Coefficient -- 7.11.1.1.Evaluation of andmu;JT -- 7.11.2.Isentropic Cooling -- 7.11.3.Temperature Change during Throttling -- 7.11.3.1.Incompressible Fluid -- 7.11.3.2.Ideal Gas -- 7.11.3.3.Real Gas -- 7.11.4.Enthalpy Correction Charts and Joule[--]Thomson Coefficient -- 7.11.5.Inversion Curves -- 7.11.5.1.State Equations -- 7.11.5.2.Enthalpy Charts -- 7.11.5.3.Empirical Relations -- 7.11.6.Throttling of Saturated or Subcooled Liquids -- 7.11.7.Throttling of Vapors -- 7.11.8.Throttling in Closed Systems -- 7.11.8.1.Temperature Change Using Real Gas Equation -- 7.11.8.2.Euken Coefficient: Throttling at Constant Volume -- 7.11.8.3.Entropy Change -- 7.12.Development of Thermodynamic Tables -- 7.12.1.Procedure for Determining Thermodynamic Properties -- 7.12.2.Entropy -- 7.13.Summary -- Objectives -- 8.1.Introduction -- 8.2.Generalized Relations and Partial and Mixture Molal Properties -- 8.2.1.Mixture Composition -- 8.2.1.1.Mole Fraction -- 8.2.1.2.Mass Fraction -- 8.2.1.3.Molarity (M) -- 8.2.1.4.Molality (Mo) -- 8.2.1.5.Dilute Solution -- 8.2.1.6.Molecular Weight of a Mixture -- 8.2.1.7.Mixture Molal Property (b) -- 8.2.2.Generalized Relations -- 8.2.3.Partial Molal Property and Characteristics -- 8.2.3.1.Partial Molal Property -- 8.2.3.2.Euler and Gibbs[--]Duhem Equations -- 8.2.3.3.Characteristics of Partial Molal Properties -- 8.2.3.4.Physical Interpretation of Partial Molal Property -- 8.2.3.5.Partial Molal Property and Intermolecular Potential in Mixtures -- 8.3.Useful Relations for Partial Molal Properties -- 8.3.1.Binary Mixture -- 8.3.2.Multicomponent Mixture -- 8.3.3.Relations between Partial Molal and Pure Properties -- 8.3.3.1.Partial Molal Enthalpy and Gibbs Function -- 8.3.3.2.Differentials of Partial Molal Properties -- 8.3.3.3.Maxwell's Relations -- 8.4.Ideal Gas Mixture -- 8.4.1.Volume -- 8.4.2.Pressure -- 8.4.3.Internal Energy -- 8.4.4.Enthalpy -- 8.4.5.Entropy -- 8.4.6.Gibbs Free Energy -- 8.5.Ideal Solution -- 8.5.1.Volume -- 8.5.2.Internal Energy and Enthalpy -- 8.5.3.Gibbs Function -- 8.5.4.Entropy -- 8.6.Fugacity -- 8.6.1.Fugacity and Activity -- 8.6.2.Approximate Solutions for gk -- 8.6.2.1.Ideal Solution or the Lewis[--]Randall Model (LR) -- 8.6.2.2.Henry's Law (HL) -- 8.6.2.3.Standard States and Gibbs Function -- 8.6.2.4.Evaluation of the Activity of a Component in a Mixture -- 8.6.2.5.Activity Coefficient -- 8.6.2.6.Fugacity Coefficient Relation in Terms of State Equation for P -- 8.6.2.7.Duhem[--]Margules Relation -- 8.6.2.8.Relations among Gibbs Function, Fugacity, and Enthalpy -- 8.7.Excess Property -- 8.8.Osmotic Pressure -- 8.8.1.Real Solution -- 8.8.2.Ideal Solution -- 8.9.Molal Properties Using the Equations of State -- 8.9.1.Mixing Rules for Equations of State -- 8.9.1.1.General Rule -- 8.9.1.2.Kay's Rule -- 8.9.1.3.RK Mixing and Empirical Mixing Rules -- 8.9.1.4.Peng[--]Robinson Equation of State -- 8.9.1.5.Marti n[--]Hou Equation of State -- 8.9.1.6.Virial Equation of State for Mixtures -- 8.9.1.7.Law of Additive Pressure -- 8.9.1.8.Law of Additive Volumes (LAV) -- 8.9.1.9.Pitzer Factor for a Mixture -- 8.9.2.Partial Molal Properties Using Mixture State Equations -- 8.9.2.1.Kay's Rule -- 8.9.2.2.RK Mixing rule -- 8.10.Summary -- Objectives -- 9.1.Introduction -- 9.2.Miscible, Immiscible, and Partially Miscible Mixture -- 9.3.Phase Equilibrium -- 9.3.1.Two-Phase System -- 9.3.1.1.Multiphase Systems -- 9.1.3.2.Gibbs Phase Rule -- 9.4.Simplified Criteria for Phase
0
0
0
"Designed for readers who need to understand and apply the engineering physics of thermodynamic concepts, this volume features physical explanations along with mathematical equations so that the principles can be applied to real-world problems. Employing almost 300 illustrations to enhance clarity, the book first presents the phenomenological approach to a problem and then delves into the details. Using a self-teaching format, the authors eschew esoteric material in favor of concrete examples and applications. The book includes several tables containing thermodynamic properties and other useful information, and additional material is available for download"--
"Designed for those engineers who need to grasp the physics of thermodynamic concepts and apply that knowledge to their specific field, this updated new edition features physical explanations along with mathematical equations so that fundamental principles can be readily applied to real-world problems. Rather than merely digesting the abstract generalized concepts and mathematical relations governing thermodynamics, this book allows engineers to develop an approach that will allow them to tackle new problems.Employing almost 300 illustrations and 150 examples to enhance clarity, unlike more conventional texts, the book presents the phenomenological approach to a problem and then delves into the details. Using a self-teaching format, the authors keep esoteric material to a minimum while favoring concrete examples and applications. The book includes several tables containing thermodynamic properties and other useful information. Additional material is available for download"--