ACOUSTICAL IMAGING; Contents; About the Author; Foreword; 1 Introduction; References; 2 Physics of Acoustics and Acoustical Imaging; 2.1 Introduction; 2.2 Sound Propagation in Solids; 2.2.1 Derivation of Linear Wave Equation of Motion and its Solutions; 2.2.2 Symmetries in Linear Acoustic Wave Equations and the New Stress Field Equation; 2.3 Use of Gauge Potential Theory to Solve Acoustic Wave Equations; 2.4 Propagation of Finite Wave Amplitude Sound Wave in Solids; 2.4.1 Higher-Order Elasticity Theory; 2.4.2 Nonlinear Effects; 2.4.3 Derivation of the Nonlinear Acoustic Equation of Motion
0
"Acoustical Imaging starts with an introduction to the basic theories and principles of acoustics and acoustical imaging, then progresses to discuss its varied applications: nondestructive testing, medical imaging, underwater imaging and SONAR and geophysical exploration. The author draws together the different technologies, highlighting the similarities between topic areas and their common underlying theory. Some advanced topics are also described such as nonlinear acoustical imaging and its application in nondestructive testing, application of chaos theory to acoustical imaging, statistical treatment of acoustical imaging and negative refraction"--Provided by publisher
"Introduces the basic theories and principles of acoustics and acoustical imaging"--Provided by publisher