Includes bibliographical references (p. 1050-1085) and index.
The roots of science -- An ancient theorem and a modern question -- Kinds of number in the physical world -- Magical complex numbers -- Geometry of logarithms, powers, and roots -- Real-number calculus -- Complex-number calculus -- Riemann surfaces and complex mappings -- Fourier decomposition and hyperfunctions -- Surfaces -- Hypercomplex numbers -- Manifolds of n dimensions -- Symmetry groups -- Calculus on manifolds -- Fibre bundles and gauge connections -- The ladder of infinity -- Spacetime -- Minkowskian geometry -- The classical fields of Maxwell and Einstein -- Lagrangians and Hamiltonians -- The quantum particle -- Quantum algebra, geometry, and spin -- The entangled quantum world -- Dirac's electron and antiparticles -- The standard model of particle physics -- Quantum field theory -- The Big Bang and its thermodynamic legacy -- Speculative theories of the early universe -- The measurement paradox -- Gravity's role in quantum state reduction -- Supersymmetry, supra-dimensionality, and strings -- Einstein's narrower path; loop variables -- More radical perspectives; twistor theory -- Where lies the road to reality?