Machine generated contents note: pt. I Surface modification techniques -- 1.Surface modification of biomaterials by plasma polymerization / J. W. Bradley -- 1.1.Introduction -- 1.2.An overview of plasma and plasma polymerization -- 1.3.Plasma generation and system design -- 1.4.Plasma parameters -- 1.5.Intrinsic parameters -- 1.6.Potential biomaterial applications -- 1.7.Future trends in plasma polymers -- 1.8.Sources of further information and advice -- 1.9.References -- 2.Surface modification of biomaterials by covalent binding of poly(ethylene glycol) (PEG) / S. J. Onis -- 2.1.Introduction -- 2.2.Principles and methods -- 2.3.Technologies and applications -- 2.4.Conclusions and future trends -- 2.5.References -- 3.Surface modification of biomaterials by heparinisation to improve blood compatibility / J. M. Courtney -- 3.1.Introduction -- 3.2.Bioactive molecule: heparin -- 3.3.Blood-biomaterial interaction -- 3.4.Surface modification by heparinisation for improved blood compatibility -- 3.5.Future trends in heparinisation of biomaterial surfaces -- 3.6.References -- 4.Surface modification of biomaterials by peptide functionalisation / R. V. Ulijn -- 4.1.Introduction -- 4.2.Peptides and peptide functionalisation of surfaces -- 4.3.Defining the biomaterial surface -- 4.4.Peptide functionalised surfaces -- 4.5.Non-covalent peptide functionalisation by self-assembly -- 4.6.Spatial control of peptide functionality -- 4.7.Conclusions -- 4.8.References -- 5.Metal surface oxidation and surface interactions / R. Chiesa -- 5.1.Surface oxides in metallic medical devices: the scenario -- 5.2.Titanium oxides on Ti implants: from crystallographic structure to the theoretical study of the atomistic surface structure and behaviour -- 5.3.Technologies for tailoring Ti oxides on titanium -- 5.4.Future trends -- 5.5.References -- 5.6.Appendix A: Materials and methods for unpublished results -- 5.7.Appendix B: Abbreviations and symbols -- 6.Surface modification of biomaterials by calcium phosphate deposition / S. M. Best -- 6.1.Introduction -- 6.2.Basic methods and applications -- 6.3.Strengths and weaknesses -- 6.4.Future trends -- 6.5.Sources of further information and advice -- 6.6.References -- 7.Biomaterial surface topography to control cellular response: technologies, cell behaviour and biomedical applications / M. J. Dalby -- 7.1.Introduction -- 7.2.Defining micro and nano -- 7.3.Manufacturing surface topography -- 7.4.How surface topography affects cell behaviour -- 7.5.Technologies and potential applications -- 7.6.Tissue regeneration -- 7.7.Current issues and future trends -- 7.8.Acknowledgements -- 7.9.References -- pt. II Analytical techniques and applications -- 8.Techniques for analysing biomaterial surface chemistry / M. R. Alexander -- 8.1.Introduction -- 8.2.X-ray photoelectron spectroscopy (XPS) -- 8.3.Time of flight secondary ion mass spectrometry (ToF SIMS) -- 8.4.Sample preparation and handling -- 8.5.Sources of further information and advice -- 8.6.Acknowledgements -- 8.7.References -- 9.Techniques for analyzing biomaterial surface structure, morphology and topography / N. S. Murthy -- 9.1.Introduction -- 9.2.Surface morphology and topography -- 9.3.Surface structure and spatial distribution -- 9.4.Energetics -- 9.5.Future trends -- 9.6.References -- 10.Modifying biomaterial surfaces to optimise interactions with blood / A. M. Seifalian -- 10.1.Introduction -- 10.2.Physicochemical modification -- 10.3.Biofunctionalisation -- 10.4.Conclusions -- 10.5.References -- 11.Modifying biomaterial surfaces with bioactives to control infection / S. A. Al-Bataineh -- 11.1.Introduction -- 11.2.Plasma-based strategies for combating device-related infections -- 11.3.Plasma polymers with incorporated metal nanoparticles or ions -- 11.4.Covalent immobilisation of antibacterial molecules -- 11.5.Future trends -- 11.6.References -- 12.Modifying biomaterial surfaces to optimise interactions with soft tissues / J. Gough -- 12.1.Introduction -- 12.2.Surface modification of biomaterials for the liver -- 12.3.Surface modification of biomaterials for the kidney -- 12.4.Surface modification of biomaterials for tendons/ligaments -- 12.5.Surface modification of biomaterials for skeletal muscle -- 12.6.Surface modification of biomaterials for skin -- 12.7.Conclusions -- 12.8.Future trends -- 12.9.References -- 13.Modifying biomaterial surfaces for the repair and regeneration of nerve cells / E. Engel -- 13.1.Introduction: the nervous system -- 13.2.Surface properties and their effect on neural cells -- 13.3.Future trends -- 13.4.References -- 14.Modifying biomaterial surfaces to control stem cell growth and differentiation / J. W. Haycock -- 14.1.Introduction -- 14.2.Surfaces for stem cell expansion -- 14.3.Surfaces for directing stem cell differentiation -- 14.4.Surfaces for maintaining the differentiated cell phenotype -- 14.5.Future trends -- 14.6.Acknowledgements -- 14.7.References -- 15.Modifying biomaterial surfaces to optimise interactions with bone / R. L. Sammons -- 15.1.Introduction -- 15.2.Joint replacements: successes and challenges -- 15.3.Bone graft substitute materials: successes and challenges -- 15.4.Percutaneous bone-anchored devices -- 15.5.Summary and conclusions -- 15.6.Sources of further information and advice -- 15.7.References.