Reduce fraud risk Using CNN and LSTM and Time Series Data in E-Commerce
نام عام مواد
Dissertation
نام نخستين پديدآور
Hayder Al Jassim
وضعیت نشر و پخش و غیره
نام ناشر، پخش کننده و غيره
Electrical and Computer Engineering
تاریخ نشرو بخش و غیره
1401
مشخصات ظاهری
نام خاص و کميت اثر
87p.
ساير جزييات
cd
یادداشتهای مربوط به پایان نامه ها
جزئيات پايان نامه و نوع درجه آن
M.S.
نظم درجات
Software Engineering Field of Data Mining
زمان اعطا مدرک
1401/07/19
یادداشتهای مربوط به خلاصه یا چکیده
متن يادداشت
Fraud and forgery in bank cards or financial transactions is the illegal activity of a person or people in a bank account that does not belong to them. If a person illegally uses another person's bank account, he has committed credit card fraud. Today, due to the growth of the Internet of Things and virtual banking, such frauds have increased significantly. Artificial intelligence and data mining should be used to identify these frauds with high accuracy. In this thesis, using deep learning, convolutional neural networks, and LSTM, we try to identify fraud in bank transactions with high accuracy. CNNs have a good ability to find spatial features, and in contrast, LSTM can find temporal relationships between data well. The combination of these two deep networks can lead to a very accurate bank card fraud detection system.
عنوانهای گونه گون دیگر
عنوان گونه گون
کاهش خطر تقلب با استفاده از CNN و LSTM و داده های سری زمانی در تجارت الکترونیک
اصطلاحهای موضوعی کنترل نشده
اصطلاح موضوعی
Internet of Things (IoT), banks, fraud monitoring, (CNN), deep learning.