mathematics of Egypt, Mesopotamia, China, India, and Islam
ساير اطلاعات عنواني
:a sourcebook
نام نخستين پديدآور
/ Victor Katz, editor
نام ساير پديدآوران
; Annette Imhausen ... [et al.]
وضعیت نشر و پخش و غیره
محل نشرو پخش و غیره
Princeton
نام ناشر، پخش کننده و غيره
: Princeton University Press
تاریخ نشرو بخش و غیره
, 2007.
مشخصات ظاهری
نام خاص و کميت اثر
xiv, 685 p.
ساير جزييات
: , ill
یادداشتهای مربوط به کتابنامه ، واژه نامه و نمایه های داخل اثر
متن يادداشت
Bibliography
یادداشتهای مربوط به مندرجات
متن يادداشت
Preface -Permissions -Introduction -ch. 1.Egyptian mathematics /Annette Imhausen -Preliminary remarks -1.Introduction -a.Invention of writing and number systems -b.Arithmetic -c.Metrology -2.Hieratic mathematical texts -a.Table texts -b.Problem texts -3.Mathematics in administrative texts -a.Middle Kingdom texts : the Reisner papyri -b.New Kingdom texts : Ostraca from Deir el Medina -4.Mathematics in the Graeco-Roman period -a.Context -b.Table texts -c.Problem texts -5.Appendices -a.Glossary of Egyptian terms -b.Sources -c.References - ch. 2.Mesopotamian mathematics /Eleanor Robson -1.Introduction -a.Mesopotamian mathematics through Western eyes -b.Mathematics and scribal culture in ancient Iraq -c.From tablet to translation -d.Explananda -2.The long third millennium, c. 3200-2000 BCE -a.Uruk in the late fourth millennium -b.Shuruppag in the mid-third millennium -c.Nippur and Girsu in the twenty-fourth century BCE -d.Umma and Girsu in the twenty-first century BCE -3.The old Babylonian period, c. 2000-1600 BCE -a.Arithmetical and metrological tables -b.Mathematical problems -c.Rough work and reference lists -4.Later Mesopotamia, c. 1400-150 BCE -5.Appendices -a.Sources -b.References - ch. 3.Chinese mathematics /Joseph W. Dauben -Preliminary remarks -1.China : the historical and social context -2.Methods and procedures : counting rods, the "out-in" principle -3.Recent archaeological discoveries : the earliest yet-known bamboo text -4.Mathematics and astronomy : the Zhou bi suan jing and right triangles (The Gou-gu or "Pythagorean" theorem) -5.The Chinese "Euclid", Liu Hui -a.The Nine Chapters -b.The Sea Island Mathematical Classic -6.The "Ten Classics" of ancient Chinese mathematics -a.Numbers and arithmetic : the Mathematical Classic of Master Sun -b.The Mathematical Classic of Zhang Qiujian -7.Outstanding achievements of the Song and Yuan dynasties (960-1368 CE) -a.Qin Jiushao -b.Li Zhi (Li Ye) -c.Yang Hui - d. Zhu Shijie -8.Matteo Ricci and Xu Guangxi, "prefaces" to the first Chinese edition of Euclid's Elements (1607) -9.Conclusion -10.Appendices -a.Sources -b.Bibliographical guides -c.References - ch. 4.Mathematics in India /Kim Plofker -1.Introduction : origins of Indian mathematics -2.Mathematical texts in ancient India -a.The Vedas -b.The aSulbasutras -c.Mathematics in other ancient texts -d.Number systems and numerals -3.Evolution of mathematics in medieval India -a.Mathematics chapters in Siddhغanta texts -b.Transmission of mathematical ideas to the Islamic world -c.Textbooks on mathematics as a separate subject -d.The audience for mathematics education -e.Specialized mathematics : astronomical and cosmological problems -4.The Kerala school -a.Madhava, his work, and his school -b.Infinite series and the role of demonstrations -c.Other mathematical interests in the Kerala school -5.Continuity and transition in the second millennium -a.The ongoing development of Sanskrit mathematics -b.Scientific exchanges at the courts of Delhi and Jaipur -c.Assimilation of ideas from Islam ; mathematical table texts -6.Encounters with modern Western mathematics -a.Early exchanges with European mathematics -b.European versus "native" mathematics education in British India -c.Assimilation into modern global mathematics -7.Appendices -a.Sources -b.References - ch. 5.Mathematics in medieval Islam /J. Lennart Berggren -1.Introduction -2.Appropriation of the ancient heritage -3.Arithmetic -4.Algebra -5.Number theory -6.Geometry -a.Theoretical geometry -b.Practical geometry -7.Trigonometry -8.Combinatorics -9.On mathematics -10.Appendices -a.Sources -b.References -Contributors -Index.