Understanding machine learning :from theory to algorithms
وضعیت نشر و پخش و غیره
محل نشرو پخش و غیره
New York, NY, USA
نام ناشر، پخش کننده و غيره
Cambridge University Press
تاریخ نشرو بخش و غیره
2014.
مشخصات ظاهری
نام خاص و کميت اثر
xvi, 397 pages : illustrations ; 26 cm
يادداشت کلی
متن يادداشت
Includes bibliographical references )pages 385-393( and index
یادداشتهای مربوط به عنوان و پدیدآور
متن يادداشت
Shai Shalev-Shwartz, The Hebrew University, Jerusalem, Shai Ben-David, University of Waterloo, Canada
یادداشتهای مربوط به مندرجات
متن يادداشت
Machine generated contents note: 1. Introduction; Part I. Foundations: 2. A gentle start; 3. A formal learning model; 4. Learning via uniform convergence; 5. The bias-complexity tradeoff; 6. The VC-dimension; 7. Non-uniform learnability; 8. The runtime of learning; Part II. From Theory to Algorithms: 9. Linear predictors; 01. Boosting; 11. Model selection and validation; 21. Convex learning problems; 31. Regularization and stability; 41. Stochastic gradient descent; 51. Support vector machines; 61. Kernel methods; 71. Multiclass, ranking, and complex prediction problems; 81. Decision trees; 91. Nearest neighbor; 02. Neural networks; Part III. Additional Learning Models: 12. Online learning; 22. Clustering; 32. Dimensionality reduction; 42. Generative models; 52. Feature selection and generation; Part IV. Advanced Theory: 62. Rademacher complexities; 72. Covering numbers; 82. Proof of the fundamental theorem of learning theory; 92. Multiclass learnability; 03. Compression bounds; 13. PAC-Bayes; Appendix A. Technical lemmas; Appendix B. Measure concentration; Appendix C. Linear algebra