• صفحه اصلی
  • جستجوی پیشرفته
  • فهرست کتابخانه ها
  • درباره پایگاه
  • ارتباط با ما
  • تاریخچه

عنوان
Fluid flow, matrix strain and loading frequency as interdependent control parameters in skeletal adaptation

پدید آورنده
Y.-X. Qin

موضوع
Applied sciences,Biological sciences,Biomedical research,Biophysics,bone,Mechanical engineering

رده

کتابخانه
مرکز و کتابخانه مطالعات اسلامی به زبان‌های اروپایی

محل استقرار
استان: قم ـ شهر: قم

مرکز و کتابخانه مطالعات اسلامی به زبان‌های اروپایی

تماس با کتابخانه : 32910706-025

شماره کتابشناسی ملی

شماره
TLpq304398733

زبان اثر

زبان متن نوشتاري يا گفتاري و مانند آن
انگلیسی

عنوان و نام پديدآور

عنوان اصلي
Fluid flow, matrix strain and loading frequency as interdependent control parameters in skeletal adaptation
نام عام مواد
[Thesis]
نام نخستين پديدآور
Y.-X. Qin
نام ساير پديدآوران
C. T. C. Rubin, Fu-Pen

وضعیت نشر و پخش و غیره

نام ناشر، پخش کننده و غيره
State University of New York at Stony Brook
تاریخ نشرو بخش و غیره
1997

مشخصات ظاهری

نام خاص و کميت اثر
206

یادداشتهای مربوط به پایان نامه ها

جزئيات پايان نامه و نوع درجه آن
Ph.D.
کسي که مدرک را اعطا کرده
State University of New York at Stony Brook
امتياز متن
1997

یادداشتهای مربوط به خلاصه یا چکیده

متن يادداشت
Bone's ability to respond relatively high frequencies of mechanical stimuli is indicative as to how bone cells sense the signal for adaptation. This frequency sensitivity data extends beyond identifying the factor that stimulates bone formation. The most active inhibitor of bony ingrowth is the shear strain and stress generated at the bone-implant interface. While specific mechanical parameters, i.e., normal strains and strain gradients, may mildly encourage the bony ingrowth, shear actively inhibits it. To maximally stimulate bony ingrowth, implant design must promote specific stresses or strains and their gradients, while minimizing shear stress or strain at the bone-implant interface. The ability of bone tissue to differentiate shear and normal strain conditions was evaluated by monitoring the adaptive response of axial and torsional loading conditions in a turkey ulna model. Of three distinct regimens (disuse, axial and torsional loads), only disuse caused a significant change in gross areal properties as compared to controls (12% loss of bone), suggesting both axial and torsional loading conditions were suitable substitutes for functional signals normally responsible for bone homeostasis. However, the intracortical response was strongly dependent on the manner in which the bone was loaded. It appears that bone tissue can readily differentiate between distinct components of the strain environment, with strain per se necessary to retain coupled formation and resorption, shear strain (achieving this goal by maintaining the status quo, while axial strain elevates intracortical turnover, but retains coupling. The interdependent role of loading frequency, cycle number and intensity was investigated by quantifying the bone remodeling response to a relatively high frequency (30 Hz) loading regimen. The applied strain distributions were correlated to site-specific surface modeling/remodeling and intracortical porosity under long duration loading, following disuse plus 18,000 of applied loading cycles with peak normal strain of 700 usd\mu\varepsilon,usd and disuse plus 108,000 applied loading cycles induced at 100 usd\mu\varepsilon.usd While new bone was found in the low cycle, high strain magnitude group, the sites correlated poorly with the distribution of induced strain. However, a strong correlation was observed between the preservation of bone mass and longitudinal normal strain (R = 0.91) in the high cycle, low strain magnitude group. These results indicate that mechanical loading can hold anti-resorptive potential, even at levels less than 100 usd\mu\varepsilon,usd should a sufficient number of strain cycles be applied. Considering the interdependent role of strain magnitude, shear and normal strain components, strain gradient and loading frequency, a likely candidate involved in the adaptive process may be the intracortical fluid pressure and resultant fluid flow which arises in the cortical bone matrix by the time-varying mechanical strain, which may serve as a critical signal to regulate cell activity. This hypothesis is supported by experiments which evaluate whole bone fluid pressure and its gradient in a porous media model incorporated with in vivo streaming potential measurements. (Abstract shortened by UMI.)

موضوع (اسم عام یاعبارت اسمی عام)

موضوع مستند نشده
Applied sciences
موضوع مستند نشده
Biological sciences
موضوع مستند نشده
Biomedical research
موضوع مستند نشده
Biophysics
موضوع مستند نشده
bone
موضوع مستند نشده
Mechanical engineering

نام شخص به منزله سر شناسه - (مسئولیت معنوی درجه اول )

مستند نام اشخاص تاييد نشده
C. T. C. Rubin, Fu-Pen
مستند نام اشخاص تاييد نشده
Y.-X. Qin

دسترسی و محل الکترونیکی

نام الکترونيکي
 مطالعه متن کتاب 

وضعیت انتشار

فرمت انتشار
p

اطلاعات رکورد کتابشناسی

نوع ماده
[Thesis]
کد کاربرگه
276903

اطلاعات دسترسی رکورد

سطح دسترسي
a
تكميل شده
Y

پیشنهاد / گزارش اشکال

اخطار! اطلاعات را با دقت وارد کنید
ارسال انصراف
این پایگاه با مشارکت موسسه علمی - فرهنگی دارالحدیث و مرکز تحقیقات کامپیوتری علوم اسلامی (نور) اداره می شود
مسئولیت صحت اطلاعات بر عهده کتابخانه ها و حقوق معنوی اطلاعات نیز متعلق به آنها است
برترین جستجوگر - پنجمین جشنواره رسانه های دیجیتال