The positive semidefinite completion problem for two unspecified entries
نام عام مواد
[Thesis]
نام نخستين پديدآور
M. O. N. a. Omran
نام ساير پديدآوران
W. W. Barrett
وضعیت نشر و پخش و غیره
نام ناشر، پخش کننده و غيره
Brigham Young University
تاریخ نشرو بخش و غیره
1997
مشخصات ظاهری
نام خاص و کميت اثر
53
یادداشتهای مربوط به پایان نامه ها
جزئيات پايان نامه و نوع درجه آن
Ph.D.
کسي که مدرک را اعطا کرده
Brigham Young University
امتياز متن
1997
یادداشتهای مربوط به خلاصه یا چکیده
متن يادداشت
The positive semidefinite (PSD) completion problem is concerned with determining the set of PSD completions of a partial matrix. Let usdB(x,y)usd and usdA(x,y)usd be real partial PSD matrices of order usdn\ge4usd with x and y the two unspecified entries corresponding to the two adjacent (respectively, nonadjacent) missing edges of their graphs. We show that the possible completion regions for usdB(x,y)usd are either a single point, a line segment, or an ellipse. For usdA(x,y)usd we give a fairly complete description of the real PSD completion region R. We find necessary and sufficient conditions on the specified entries of usdA(x,y)usd so that there are 1, 2, 3 or 4 singular points on the boundary of R, and so that usdA(x,y)usd has rank 2 PSD completions. We show that rank 2 completions occur in one of three ways: either there is a unique PSD completion (R is a single point), or det usdA(x,y)usd factors (with the occurrence of singular points), or the PSD completion region R (not a single point) contains a unique rank 2 PSD completion which is a singular point.
موضوع (اسم عام یاعبارت اسمی عام)
موضوع مستند نشده
Mathematics
موضوع مستند نشده
Pure sciences
نام شخص به منزله سر شناسه - (مسئولیت معنوی درجه اول )