Analysis of new deep submicrometer metal-oxide-semiconductor device structures
نام عام مواد
[Thesis]
نام نخستين پديدآور
M. A. Khan
وضعیت نشر و پخش و غیره
نام ناشر، پخش کننده و غيره
Arizona State University
تاریخ نشرو بخش و غیره
1992
مشخصات ظاهری
نام خاص و کميت اثر
164
یادداشتهای مربوط به پایان نامه ها
جزئيات پايان نامه و نوع درجه آن
Ph.D.
کسي که مدرک را اعطا کرده
Arizona State University
امتياز متن
1992
یادداشتهای مربوط به خلاصه یا چکیده
متن يادداشت
The behavior of four deep sub-micron n-channel metal oxide semiconductor (n-MOS) structures are described and detailed in this dissertation. The oxide thickness is selected as 10 nanometer and the effective physical channel length is approximately 0.12 mum. The physical and electrical characteristics of these devices are simulated on the device simulation program PISCES. One of the devices simulated has a very thin layer of tungsten as the gate electrode. The Tungsten layer extends under the side wall spacers, giving the cross section of the gate the appearance of an inverted letter 'T'. The electrical characteristics of the inverse-T tungsten gate (ITTG) device are compared to those of the inverse-T poly gate (ITPG) device and the Short Poly Gate (SPG) device. It is shown that the ITTG has higher transconductance (gm) and larger drain saturation current, compared with those parameters for the ITPG and SPG. The device structures utilize a punch-through implant to prevent punch-through break-down. The simulation results show that the ITTG has a reduced vertical electric field, thus higher oxide breakdown voltage. The ITTG structures also have lower subthreshold voltage swing and smaller leakage currents due to drain induced barrier lowering. The simulation results also show that the ITTG device has a lateral electric field less than 5.5 usd\timesusd 10 V/cm for reliable device operation. By comparing results, it is observed that the use of the Tungsten gate electrode as the inverse-T gate cross section results in devices with excellent performance and improved electrical characteristics. Hence, the ITTG structures offer highly reliable and small size devices which are most suitable for modern, high performance, high density digital circuit applications.
موضوع (اسم عام یاعبارت اسمی عام)
موضوع مستند نشده
Applied sciences
موضوع مستند نشده
Electrical engineering
موضوع مستند نشده
Electrical engineering
موضوع مستند نشده
Electromagnetism
موضوع مستند نشده
metal oxide semiconductor
موضوع مستند نشده
Pure sciences
نام شخص به منزله سر شناسه - (مسئولیت معنوی درجه اول )