Taraflılığın tespiti için bir dil modeli yaklaşımı
نام عام مواد
[Thesis]
نام نخستين پديدآور
Atik, Ceren
نام ساير پديدآوران
Tekir, Selma
وضعیت نشر و پخش و غیره
نام ناشر، پخش کننده و غيره
Izmir Institute of Technology (Turkey)
تاریخ نشرو بخش و غیره
2020
مشخصات ظاهری
نام خاص و کميت اثر
55
یادداشتهای مربوط به پایان نامه ها
جزئيات پايان نامه و نوع درجه آن
Master's
کسي که مدرک را اعطا کرده
Izmir Institute of Technology (Turkey)
امتياز متن
2020
یادداشتهای مربوط به خلاصه یا چکیده
متن يادداشت
Technology is developing day by day and is involved in every area of our lives. Technological innovations such as artificial intelligence can strengthen social biases that already exist in society, regardless of the developers' intentions. Therefore, researchers should be aware of this ethical issue. In this thesis, the effect of gender bias, which is one of the social biases, on occupation classification is investigated. For this, a new dataset was created by collecting obituaries from the New York Times website and they were handled in two different versions, with and without gender indicators. Since occupation and gender are independent variables, gender indicators should not have an impact on the occupation prediction of models. In this context, in order to investigate gender bias on occupation estimation, a model in which occupation and gender are learned together is evaluated as well as models that make only occupation classification are evaluated. The results obtained from models state that gender bias has a role in classification occupation.
موضوع (اسم عام یاعبارت اسمی عام)
موضوع مستند نشده
Artificial intelligence
موضوع مستند نشده
Bias
موضوع مستند نشده
Computer engineering
نام شخص به منزله سر شناسه - (مسئولیت معنوی درجه اول )