Leafwise Morse-Novikov Cohomological Invariants of Foliations
نام عام مواد
[Thesis]
نام نخستين پديدآور
Islam, Md Shariful
نام ساير پديدآوران
Richardson, Ken
وضعیت نشر و پخش و غیره
نام ناشر، پخش کننده و غيره
Texas Christian University
تاریخ نشرو بخش و غیره
2019
مشخصات ظاهری
نام خاص و کميت اثر
95
یادداشتهای مربوط به پایان نامه ها
جزئيات پايان نامه و نوع درجه آن
Ph.D.
کسي که مدرک را اعطا کرده
Texas Christian University
امتياز متن
2019
یادداشتهای مربوط به خلاصه یا چکیده
متن يادداشت
The idea of Lichnerowicz or Morse-Novikov cohomology groups of a manifold has been utilized by many researchers to study important properties and invariants of a manifold. Morse-Novikov cohomology is defined using the differential d_ω=d+ω∧ , where ω is a closed 1-form. We study Morse-Novikov cohomology in the context of singular distributions given by the kernel of differential forms, and foliations of manifold. The kernel of a d_ω closed form is involutive and hence gives a foliation of a manifold. A transversely oriented foliation of a Riemannian manifold uniquely determines leafwise Morse-Novikov cohomology groups, which are independent of the choice of metric in the sense that different metrics correspond to isomorphic groups. The relevant 1-form ω, which is always leafwise closed, can be chosen to be the mean curvature 1-form of the transverse distribution of the foliation. In the case of Riemannian foliations, we prove that the reduced leafwise Morse-Novikov cohomology groups satisfy the Hodge theorem and Poincar´e duality. We also show that for general singular foliations, the isomorphism classes of the induced leafwise Morse-Novikov cohomology groups are foliated homotopy invariants.
موضوع (اسم عام یاعبارت اسمی عام)
موضوع مستند نشده
Mathematics
نام شخص به منزله سر شناسه - (مسئولیت معنوی درجه اول )