• صفحه اصلی
  • جستجوی پیشرفته
  • فهرست کتابخانه ها
  • درباره پایگاه
  • ارتباط با ما
  • تاریخچه
  • ورود / ثبت نام

عنوان
Structure-Property Prediction for Magnetorheological Elastomer Using Machine Learning Approaches

پدید آورنده
Feng, Shengwei

موضوع
Civil engineering,Engineering

رده

کتابخانه
مرکز و کتابخانه مطالعات اسلامی به زبان‌های اروپایی

محل استقرار
استان: قم ـ شهر: قم

مرکز و کتابخانه مطالعات اسلامی به زبان‌های اروپایی

تماس با کتابخانه : 32910706-025

شماره کتابشناسی ملی

شماره
TLpq2299003558

زبان اثر

زبان متن نوشتاري يا گفتاري و مانند آن
انگلیسی

عنوان و نام پديدآور

عنوان اصلي
Structure-Property Prediction for Magnetorheological Elastomer Using Machine Learning Approaches
نام عام مواد
[Thesis]
نام نخستين پديدآور
Feng, Shengwei
نام ساير پديدآوران
Sun, Lizhi

وضعیت نشر و پخش و غیره

نام ناشر، پخش کننده و غيره
University of California, Irvine
تاریخ نشرو بخش و غیره
2019

مشخصات ظاهری

نام خاص و کميت اثر
99

یادداشتهای مربوط به پایان نامه ها

جزئيات پايان نامه و نوع درجه آن
M.S.
کسي که مدرک را اعطا کرده
University of California, Irvine
امتياز متن
2019

یادداشتهای مربوط به خلاصه یا چکیده

متن يادداشت
Magnetorheological elastomer (MRE) is a rubbery composite material filled with micron-sized ferromagnetic particles whose mechanical properties can be tailored by the application of external magnetic fields. Due to its magnetic and mechanical coupling effect, MRE is increasingly used in the field of engineering. Capturing the responses of MRE is essential for materials modeling and can be reached either by the physics-based finite element modeling or data-based artificial intelligence modeling. In this thesis, machine learning-based data-driven models are built to discover the structure-property linkages of MRE. The proposed method employs a pre-trained Convolutional Neural Network (CNN) and also an artificial neural network (ANN) to evaluate the critical features of the material microstructures that lead to precise predictions for the critical mechanical properties of MRE. It has been proven that these approaches can make compelling predictions while dramatically reduce the time needed for the calculation process. With low computation cost, the machine learning models also exhibit great potential in microstructure optimization.

موضوع (اسم عام یاعبارت اسمی عام)

موضوع مستند نشده
Civil engineering
موضوع مستند نشده
Engineering

نام شخص به منزله سر شناسه - (مسئولیت معنوی درجه اول )

مستند نام اشخاص تاييد نشده
Feng, Shengwei
مستند نام اشخاص تاييد نشده
Sun, Lizhi

دسترسی و محل الکترونیکی

نام الکترونيکي
 مطالعه متن کتاب 

وضعیت انتشار

فرمت انتشار
p

اطلاعات رکورد کتابشناسی

نوع ماده
[Thesis]
کد کاربرگه
276903

اطلاعات دسترسی رکورد

سطح دسترسي
a
تكميل شده
Y

پیشنهاد / گزارش اشکال

اخطار! اطلاعات را با دقت وارد کنید
ارسال انصراف
این پایگاه با مشارکت موسسه علمی - فرهنگی دارالحدیث و مرکز تحقیقات کامپیوتری علوم اسلامی (نور) اداره می شود
مسئولیت صحت اطلاعات بر عهده کتابخانه ها و حقوق معنوی اطلاعات نیز متعلق به آنها است
برترین جستجوگر - پنجمین جشنواره رسانه های دیجیتال