Data analytics, computational statistics, and operations research for engineers :
نام عام مواد
[Book]
ساير اطلاعات عنواني
methodologies and applications /
نام نخستين پديدآور
edited by Debabrata Samanta, SK Hafizul Islam, Naveen Chilamkurti, and Mohammad Hammoudeh.
وضعیت ویراست
وضعيت ويراست
First edition.
وضعیت نشر و پخش و غیره
محل نشرو پخش و غیره
Boca Raton, FL :
نام ناشر، پخش کننده و غيره
CRC Press,
تاریخ نشرو بخش و غیره
[2022]
تاریخ پیش بینی شده انتشار
تاريخ
2203
مشخصات ظاهری
نام خاص و کميت اثر
1 online resource
یادداشتهای مربوط به کتابنامه ، واژه نامه و نمایه های داخل اثر
متن يادداشت
Includes bibliographical references and index.
یادداشتهای مربوط به مندرجات
متن يادداشت
Part 1: Statistical Computing. 1. Computational Arithmetic for Statistical Computation. 2. Numerical Algorithm and Software for Statistical Computation. 3. Impact of Modern Computer on Statistical Computing. 4. Numerical Methods as the Backbone of Simulation Techniques. 5. Linear Algebra and Optimization for Computation. 6. Role of Transformation Functions in Restructuring the Problem Statements. 7. Optimization of Computing Resources. 8. Role of Statistical Graphics in Data Analysis. Part 2: Statistical Methodology. 9. Computationally Intensive Statistical Methods. 10. Techniques in Computational Inferencing. 11. Computer Models for Design of Experiments. 12. Bayesian Analysis for Computational Inference. 13. Survival Analysis Models in Computational Methods. 14. Impact of Data Mining to the Computational Statistics for Machine Learning. Part 3: Computational Statistics Applications. 15. Computational Statistics in Finance and Economics. 16. Computationally Intensive Statistical Methods in Human Biology. 17. Computational Statistics within Clinical Research. 18. Computational Statistics for Network Security.
بدون عنوان
0
یادداشتهای مربوط به خلاصه یا چکیده
متن يادداشت
"With the rapidly advancing fields of Data Analytics and Computational Statistics, it's important to keep up with current trends, methodologies, and applications. This book investigates the role of data mining in computational statistics for machine learning. It offers applications that can be used in various domains and examines the role of transformation functions in optimizing problem statements. Data Analytics, Computational Statistics, and Operations Research for Engineers: Methodologies and Applications presents applications of computationally intensive methods, inference techniques, and survival analysis models. It discusses how data mining extracts information and how machine learning improves the computational model based on the new information. Those interested in this reference work will include students, professionals, and researchers working in the areas of data mining, computational statistics, operations research, and machine learning"--
یادداشتهای مربوط به سفارشات
منبع سفارش / آدرس اشتراک
Taylor & Francis
شماره انبار
9781003152392
ویراست دیگر از اثر در قالب دیگر رسانه
عنوان
Data analytics, computational statistics, and operations research for engineers