• صفحه اصلی
  • جستجوی پیشرفته
  • فهرست کتابخانه ها
  • درباره پایگاه
  • ارتباط با ما
  • تاریخچه
  • ورود / ثبت نام

عنوان
Advanced Data Analytic Methodology for Quality Improvement in Additive Manufacturing

پدید آورنده
Khanzadehdaghalian, Mojtaba

موضوع
Industrial engineering

رده

کتابخانه
مرکز و کتابخانه مطالعات اسلامی به زبان‌های اروپایی

محل استقرار
استان: قم ـ شهر: قم

مرکز و کتابخانه مطالعات اسلامی به زبان‌های اروپایی

تماس با کتابخانه : 32910706-025

شماره کتابشناسی ملی

شماره
TL51442

زبان اثر

زبان متن نوشتاري يا گفتاري و مانند آن
انگلیسی

عنوان و نام پديدآور

عنوان اصلي
Advanced Data Analytic Methodology for Quality Improvement in Additive Manufacturing
نام عام مواد
[Thesis]
نام نخستين پديدآور
Khanzadehdaghalian, Mojtaba
نام ساير پديدآوران
Bian, Linkan

وضعیت نشر و پخش و غیره

نام ناشر، پخش کننده و غيره
Mississippi State University
تاریخ نشرو بخش و غیره
2019

يادداشت کلی

متن يادداشت
181 p.

یادداشتهای مربوط به پایان نامه ها

جزئيات پايان نامه و نوع درجه آن
Ph.D.
کسي که مدرک را اعطا کرده
Mississippi State University
امتياز متن
2019

یادداشتهای مربوط به خلاصه یا چکیده

متن يادداشت
One of the major challenges of implementing additive manufacturing (AM) processes for the purpose of production is the lack of understanding of its underlying process-structure-property relationship. Parts manufactured using AM technologies may be too inconsistent and unreliable to meet the stringent requirements for many industrial applications. The first objective of the present research is to characterize the underlying thermo-physical dynamics of AM process, captured by melt pool signals, and predict porosity during the build. Herein, we propose a novel porosity prediction method based on the temperature distribution of the top surface of the melt pool as the AM part is being built. Advance data analytic and machine learning methods are then used to further analyze the 2D melt pool image streams to identify the patterns of melt pool images and its relationship to porosity. Furthermore, the lack of geometric accuracy of AM parts is a major barrier preventing its use in mission-critical applications. Hence, the second objective of this work is to quantify the geometric deviations of additively manufactured parts from a large data set of laser-scanned coordinates using an unsupervised machine learning approach. The outcomes of this research are: 1) quantifying the link between process conditions and geometric accuracy; and 2) significantly reducing the amount of point cloud data required for characterizing of geometric accuracy.

اصطلاحهای موضوعی کنترل نشده

اصطلاح موضوعی
Industrial engineering

نام شخص به منزله سر شناسه - (مسئولیت معنوی درجه اول )

مستند نام اشخاص تاييد نشده
Khanzadehdaghalian, Mojtaba

نام شخص - ( مسئولیت معنوی درجه دوم )

مستند نام اشخاص تاييد نشده
Bian, Linkan

شناسه افزوده (تنالگان)

مستند نام تنالگان تاييد نشده
Mississippi State University

دسترسی و محل الکترونیکی

نام الکترونيکي
 مطالعه متن کتاب 

وضعیت انتشار

فرمت انتشار
p

اطلاعات رکورد کتابشناسی

نوع ماده
[Thesis]
کد کاربرگه
276903

اطلاعات دسترسی رکورد

سطح دسترسي
a
تكميل شده
Y

پیشنهاد / گزارش اشکال

اخطار! اطلاعات را با دقت وارد کنید
ارسال انصراف
این پایگاه با مشارکت موسسه علمی - فرهنگی دارالحدیث و مرکز تحقیقات کامپیوتری علوم اسلامی (نور) اداره می شود
مسئولیت صحت اطلاعات بر عهده کتابخانه ها و حقوق معنوی اطلاعات نیز متعلق به آنها است
برترین جستجوگر - پنجمین جشنواره رسانه های دیجیتال