An Equivalence between Combinatorial Tangle Floer and Contact Categories
نام عام مواد
[Thesis]
نام نخستين پديدآور
MacKinnon, Rebeccah
نام ساير پديدآوران
Cooper, Benjamin
وضعیت نشر و پخش و غیره
نام ناشر، پخش کننده و غيره
The University of Iowa
تاریخ نشرو بخش و غیره
2019
يادداشت کلی
متن يادداشت
125 p.
یادداشتهای مربوط به پایان نامه ها
جزئيات پايان نامه و نوع درجه آن
Ph.D.
کسي که مدرک را اعطا کرده
The University of Iowa
امتياز متن
2019
یادداشتهای مربوط به خلاصه یا چکیده
متن يادداشت
We prove an equivalence between the category underlying combinatorial tangle Floer homology and the contact category by building on the prior work of Lipshitz, Ozsváth, and Thurston and later Zhan. In his 2015 paper "Formal Contact Categories", Cooper establishes a relationship between the categories associated to oriented surfaces by Heegaard Floer theory and embedded contact theory. In this thesis, we examine a special case of his general argument to show an equivalence between the categories discussed by Petkova and Vértesi and those discussed by Tian. To do this, we construct two bimodules associated to the transformations between the underlying structure of combinatorial tangle Floer homology and the contact category. We take the tensor product of these bimodules and show that the product is equivalent to the identity, inducing an isomorphism between the categories of interest.
اصطلاحهای موضوعی کنترل نشده
اصطلاح موضوعی
Mathematics
نام شخص به منزله سر شناسه - (مسئولیت معنوی درجه اول )