Ensemble Learning for Predicting Gynecological Oncology Patients Using Travel Distance
نام عام مواد
[Thesis]
نام نخستين پديدآور
Jarett, Jamie
نام ساير پديدآوران
Khasawneh, Mohammad
وضعیت نشر و پخش و غیره
نام ناشر، پخش کننده و غيره
State University of New York at Binghamton
تاریخ نشرو بخش و غیره
2019
يادداشت کلی
متن يادداشت
62 p.
یادداشتهای مربوط به پایان نامه ها
جزئيات پايان نامه و نوع درجه آن
M.S.
کسي که مدرک را اعطا کرده
State University of New York at Binghamton
امتياز متن
2019
یادداشتهای مربوط به خلاصه یا چکیده
متن يادداشت
Patient readmissions to a hospital within thirty days of discharge pose many problems for all health systems. These avoidable, unscheduled admissions cause issues with bed shortages, they are expensive, and they are used as a quality metric in rating and comparing health systems. For these reasons, it is in the best interest for health systems to reduce the number of avoidable thirty day readmissions. In an attempt to tackle this issue, a model predicting surgical oncology patient readmissions using two ensemble methods was created. Along with the predicted, and generally accepted, clinical factors that affect readmissions, it was found that a patient's geographical location, including the mean income of the hometown, the traveling distance to the hospital, and the traveling time to the hospital all significantly impacted the probability of a patient being readmitted.
اصطلاحهای موضوعی کنترل نشده
اصطلاح موضوعی
Engineering
اصطلاح موضوعی
Industrial engineering
نام شخص به منزله سر شناسه - (مسئولیت معنوی درجه اول )