یادداشتهای مربوط به کتابنامه ، واژه نامه و نمایه های داخل اثر
متن يادداشت
Includes bibliographical references.
یادداشتهای مربوط به مندرجات
متن يادداشت
I. Additive Group Theory and Non-unique Factorizations / Alfred Geroldinger -- 1. Basic concepts of non-unique factorizations -- 2. The Davenport constant and first precise arithmetical results -- 3. The structure of sets of lengths -- 4. Addition theorems and direct zero-sum problems -- 5. Inverse zero-sum problems and arithmetical consequences -- II. Sumsets and Structure / Imre Z. Ruzsa -- 1. Cardinality inequalities -- 2. Structure of sets with few sums -- 3. Location and sumsets -- 4. Density -- 5. Measure and topology -- III. Thematic seminars -- 1. A survey on additive and multiplicative decompositions of sumsets and of shifted sets / Christian Elsholtz -- 2. On the detailed structure of sets with small additive property / Gregory A. Freiman -- 3. The isoperimetric method / Yahya O. Hamidoune -- 4. Additive structure of difference sets / Norbert Hegyvari -- 5. The polynomial method in additive combinatorics / Gyula Karolyi -- 6. Problems in additive number theory, III / Melvyn B. Nathanson -- 7. Incidences and the spectra of graphs / Jozsef Solymosi -- 8. Multi-dimensional inverse additive problems / Yonutz V. Stanchescu.
بدون عنوان
0
یادداشتهای مربوط به خلاصه یا چکیده
متن يادداشت
This book collects the material delivered in the 2008 edition of the DocCourse in Combinatorics and Geometry which was devoted to the topic of additive combinatorics. The first two parts, which form the bulk of the volume, contain the two main advanced courses, Additive Group Theory and Non-Unique Factorizations by Alfred Geroldinger, and Sumsets and Structure by Imre Z. Ruzsa. The first part centers on the interaction between non-unique factorization theory and additive group theory. The main objective of factorization theory is a systematic treatment of phenomena related to the non-uniqueness of factorizations in monoids and domains. This part introduces basic concepts of factorization theory such as sets of lengths, and outlines the translation of arithmetical questions in Krull monoids into combinatorial questions on zero-sum sequences over the class group. Using methods from additive group theory such as the theorems of Kneser and of Kemperman-Scherk, classical zero-sum constants are studied, including the Davenport constant and the Erdös-Ginzburg-Ziv constant. Finally these results are applied again to the starting arithmetical problems. The second part is a course on the basics of combinatorial number theory (or additive combinatorics): cardinality inequalities (Plünnecke's graph theoretical method), Freiman's theorem on the structure of sets with a small sumset, inequalities for the Schnirelmann and asymptotic density of sumsets, analogous results for the measure of sumsets of reals, the connection with the Bohr topology. The third part of the volume collects some of the seminars which accompanied the main courses. It contains contributions by C. Elsholtz, G. Freiman, Y.O. Hamidoune, N. Hegyvari, G. Karolyi, M. Nathanson, J. Solymosi and Y. Stanchescu.
یادداشتهای مربوط به سفارشات
منبع سفارش / آدرس اشتراک
Springer
شماره انبار
978-3-7643-8961-1
ویراست دیگر از اثر در قالب دیگر رسانه
عنوان
Combinatorial number theory and additive group theory.
شماره استاندارد بين المللي کتاب و موسيقي
9783764389611
موضوع (اسم عام یاعبارت اسمی عام)
موضوع مستند نشده
Additive combinatorics.
موضوع مستند نشده
Combinatorial number theory.
موضوع مستند نشده
Additive combinatorics.
موضوع مستند نشده
Combinatorial number theory.
مقوله موضوعی
موضوع مستند نشده
MAT008000.
موضوع مستند نشده
PBD.
رده بندی ديویی
شماره
511
.
6
ويراست
22
رده بندی کنگره
شماره رده
QA164
نشانه اثر
.
G47
2009
نام شخص به منزله سر شناسه - (مسئولیت معنوی درجه اول )