• صفحه اصلی
  • جستجوی پیشرفته
  • فهرست کتابخانه ها
  • درباره پایگاه
  • ارتباط با ما
  • تاریخچه

عنوان
Exploiting a novel algorithm and GPUs to break the ten quadrillion pairwise comparisons barrier for time series motifs and joins

پدید آورنده
Zhu, Y; Zimmerman, Z; Shakibay  Senobari, N; Yeh, CCM; Funning, G; Mueen, A; Brisk, P; Keogh, E

موضوع

رده

کتابخانه
مرکز و کتابخانه مطالعات اسلامی به زبان‌های اروپایی

محل استقرار
استان: قم ـ شهر: قم

مرکز و کتابخانه مطالعات اسلامی به زبان‌های اروپایی

تماس با کتابخانه : 32910706-025

شماره کتابشناسی ملی

شماره
LA8xc8s9df

عنوان و نام پديدآور

عنوان اصلي
Exploiting a novel algorithm and GPUs to break the ten quadrillion pairwise comparisons barrier for time series motifs and joins
نام عام مواد
[Article]
نام نخستين پديدآور
Zhu, Y; Zimmerman, Z; Shakibay  Senobari, N; Yeh, CCM; Funning, G; Mueen, A; Brisk, P; Keogh, E

یادداشتهای مربوط به خلاصه یا چکیده

متن يادداشت
© 2017, Springer-Verlag London Ltd., part of Springer Nature. Time series motifs are approximately repeated subsequences found within a longer time series. They have been in the literature since 2002, but recently they have begun to receive significant attention in research and industrial communities. This is perhaps due to the growing realization that they implicitly offer solutions to a host of time series problems, including rule discovery, anomaly detection, density estimation, semantic segmentation, summarization, etc. Recent work has improved the scalability so exact motifs can be computed on datasets with up to a million data points in tenable time. However, in some domains, for example seismology or climatology, there is an immediate need to address even larger datasets. In this work, we demonstrate that a combination of a novel algorithm and a high-performance GPU allows us to significantly improve the scalability of motif discovery. We demonstrate the scalability of our ideas by finding the full set of exact motifs on a dataset with one hundred and forty-three million subsequences, which is by far the largest dataset ever mined for time series motifs/joins; it requires ten quadrillion pairwise comparisons. Furthermore, we demonstrate that our algorithm can produce actionable insights into seismology and ethology.

مجموعه

تاريخ نشر
2018
عنوان
UC Riverside

دسترسی و محل الکترونیکی

نام الکترونيکي
 مطالعه متن کتاب 

اطلاعات رکورد کتابشناسی

نوع ماده
[Article]
کد کاربرگه
275578

اطلاعات دسترسی رکورد

سطح دسترسي
a
تكميل شده
Y

پیشنهاد / گزارش اشکال

اخطار! اطلاعات را با دقت وارد کنید
ارسال انصراف
این پایگاه با مشارکت موسسه علمی - فرهنگی دارالحدیث و مرکز تحقیقات کامپیوتری علوم اسلامی (نور) اداره می شود
مسئولیت صحت اطلاعات بر عهده کتابخانه ها و حقوق معنوی اطلاعات نیز متعلق به آنها است
برترین جستجوگر - پنجمین جشنواره رسانه های دیجیتال