نمایش منو
صفحه اصلی
جستجوی پیشرفته
فهرست کتابخانه ها
عنوان
Regional scale dryland vegetation classification with an integrated lidar-hyperspectral approach
پدید آورنده
Dashti, H; Poley, A; Glenn, NF; Ilangakoon, N; Spaete, L; Roberts, D; Enterkine, J; Flores, AN; Ustin, SL; Mitchell, JJ
موضوع
رده
کتابخانه
مرکز و کتابخانه مطالعات اسلامی به زبانهای اروپایی
محل استقرار
استان:
قم
ـ شهر:
قم
تماس با کتابخانه :
32910706
-
025
شماره کتابشناسی ملی
شماره
LA61j394qd
عنوان و نام پديدآور
عنوان اصلي
Regional scale dryland vegetation classification with an integrated lidar-hyperspectral approach
نام عام مواد
[Article]
نام نخستين پديدآور
Dashti, H; Poley, A; Glenn, NF; Ilangakoon, N; Spaete, L; Roberts, D; Enterkine, J; Flores, AN; Ustin, SL; Mitchell, JJ
یادداشتهای مربوط به خلاصه یا چکیده
متن يادداشت
© 2019 by the authors. The sparse canopy cover and large contribution of bright background soil, along with the heterogeneous vegetation types in close proximity, are common challenges for mapping dryland vegetation with remote sensing. Consequently, the results of a single classification algorithm or one type of sensor to characterize dryland vegetation typically show low accuracy and lack robustness. In our study, we improved classification accuracy in a semi-arid ecosystem based on the use of vegetation optical (hyperspectral) and structural (lidar) information combined with the environmental characteristics of the landscape. To accomplish this goal, we used both spectral angle mapper (SAM) and multiple endmember spectral mixture analysis (MESMA) for optical vegetation classification. Lidar-derived maximum vegetation height and delineated riparian zones were then used to modify the optical classification. Incorporating the lidar information into the classification scheme increased the overall accuracy from 60% to 89%. Canopy structure can have a strong influence on spectral variability and the lidar provided complementary information for SAM's sensitivity to shape but not magnitude of the spectra. Similar approaches to map large regions of drylands with low uncertainty may be readily implemented with unmixing algorithms applied to upcoming space-based imaging spectroscopy and lidar. This study advances our understanding of the nuances associated with mapping xeric and mesic regions, and highlights the importance of incorporating complementary algorithms and sensors to accurately characterize the heterogeneity of dryland ecosystems.
مجموعه
تاريخ نشر
2019
عنوان
UC Davis
دسترسی و محل الکترونیکی
نام الکترونيکي
مطالعه متن کتاب
اطلاعات رکورد کتابشناسی
نوع ماده
[Article]
کد کاربرگه
275578
اطلاعات دسترسی رکورد
سطح دسترسي
a
تكميل شده
Y
پیشنهاد / گزارش اشکال
×
پیشنهاد / گزارش اشکال
×
اخطار!
اطلاعات را با دقت وارد کنید
گزارش خطا
پیشنهاد