Strategic Air Traffic Planning Using Eulerian Route Based Modeling and Optimization
نام عام مواد
[Thesis]
نام نخستين پديدآور
Bombelli, Alessandro
نام ساير پديدآوران
Mease, Kenneth D
وضعیت نشر و پخش و غیره
نام ناشر، پخش کننده و غيره
UC Irvine
تاریخ نشرو بخش و غیره
2017
یادداشتهای مربوط به پایان نامه ها
کسي که مدرک را اعطا کرده
UC Irvine
امتياز متن
2017
یادداشتهای مربوط به خلاصه یا چکیده
متن يادداشت
Due to a soaring air travel growth in the last decades, air traffic management has become increasingly challenging. As a consequence, planning tools are being devised to help human decision-makers achieve a better management of air traffic. Planning tools are divided into two categories, strategic and tactical. Strategic planning generally addresses a larger planning domain and is performed days to hours in advance. Tactical planning is more localized and is performed hours to minutes in advance. An aggregate route model for strategic air traffic flow management is presented. It is an Eulerian model, describing the flow between cells of unidirectional point-to-point routes. Aggregate routes are created from flight trajectory data based on similarity measures. Spatial similarity is determined using the Frechet distance. The aggregate routes approximate actual well-traveled traffic patterns. By specifying the model resolution, an appropriate balance between model accuracy and model dimension can be achieved. For a particular planning horizon, during which weather is expected to restrict the flow, a procedure for designing airborne reroutes and augmenting the traffic flow model is developed. The dynamics of the traffic flow on the resulting network take the form of a discrete-time, linear time-invariant system. The traffic flow controls are ground holding, pre-departure rerouting and airborne rerouting. Strategic planning - determining how the controls should be used to modify the future traffic flow when local capacity violations are anticipated - is posed as an integer programming problem of minimizing a weighted sum of flight delays subject to control and capacity constraints. Several tests indicate the effectiveness of the modeling and strategic planning approach. In the final, most challenging, test, strategic planning is demonstrated for the six western-most Centers of the 22-Center national airspace. The planning time horizon is four hours long, and there is weather predicted that causes significant delays to the scheduled flights. Airborne reroute options are computed and added to the route model, and it is shown that the predicted delays can be significantly reduced. The test results also indicate the computational feasibility of the approach for a planning problem of this size.
نام شخص به منزله سر شناسه - (مسئولیت معنوی درجه اول )