Toward the Systematic Design of Complex Materials from Structural Motifs
نام عام مواد
[Thesis]
نام نخستين پديدآور
SMIDT, TESS Eleonora
نام ساير پديدآوران
Neaton, Jeffrey B
وضعیت نشر و پخش و غیره
تاریخ نشرو بخش و غیره
2018
یادداشتهای مربوط به پایان نامه ها
کسي که مدرک را اعطا کرده
Neaton, Jeffrey B
امتياز متن
2018
یادداشتهای مربوط به خلاصه یا چکیده
متن يادداشت
With first-principles calculations based on density functional theory, we can predict with good accuracy the electronic ground state properties of a fixed arrangement of nuclei in a molecule or crystal. However, the potential of this formalism and approach is not fully utilized; most calculations are performed on experimentally determined structures and stoichiometric substitutions of those systems. This in part stems from the difficulty of systematically generating 3D geometries that are chemically valid under the complex interactions existing in materials. Designing materials is a bottleneck for computational materials exploration; there is a need for systematic design tools that can keep up with our calculation capacity. Identifying a higher level language to articulate designs at the atomic scale rather than simply points in 3D space can aid in developing these tools. Constituent atoms of materials tend to arrange in recognizable patterns with defined symmetry such as coordination polyhedra in transition metal oxides or subgroups of organic molecules; we call these structural motifs. In this thesis, we advance a variety of systematic strategies for understanding complex materials from structural motifs on the atomic scale with an eye towards future design. In collaboration with experiment, we introduce the harmonic honeycomb iridates with frustrated, spin-anisotropic magnetism. At the atomic level, the harmonic honeycomb iridates have identical local geometry where each iridium atom octahedrally coordinated by oxygen hosts a
نام شخص به منزله سر شناسه - (مسئولیت معنوی درجه اول )