• صفحه اصلی
  • جستجوی پیشرفته
  • فهرست کتابخانه ها
  • درباره پایگاه
  • ارتباط با ما
  • تاریخچه

عنوان
Modeling and Characterization of Efficient Carrier Multiplication in Highly Co-doped Semiconductors and Disordered Materials

پدید آورنده
Niaz, Iftikhar Ahmad

موضوع

رده

کتابخانه
مرکز و کتابخانه مطالعات اسلامی به زبان‌های اروپایی

محل استقرار
استان: قم ـ شهر: قم

مرکز و کتابخانه مطالعات اسلامی به زبان‌های اروپایی

تماس با کتابخانه : 32910706-025

شماره کتابشناسی ملی

شماره
TL50c6z8jw

زبان اثر

زبان متن نوشتاري يا گفتاري و مانند آن
انگلیسی

عنوان و نام پديدآور

عنوان اصلي
Modeling and Characterization of Efficient Carrier Multiplication in Highly Co-doped Semiconductors and Disordered Materials
نام عام مواد
[Thesis]
نام نخستين پديدآور
Niaz, Iftikhar Ahmad
نام ساير پديدآوران
Lo, Yu-Hwa

وضعیت نشر و پخش و غیره

تاریخ نشرو بخش و غیره
2019

یادداشتهای مربوط به پایان نامه ها

کسي که مدرک را اعطا کرده
Lo, Yu-Hwa
امتياز متن
2019

یادداشتهای مربوط به خلاصه یا چکیده

متن يادداشت
This thesis offers modeling of a newly discovered gain mechanism for various photodetection applications. Conventional avalanche photodetectors have been in use for the past four decades with impact ionization being the underlying carrier multiplication mechanism.However, tradeoff between sensitivity, dynamic range and bandwidth are some of the drawbacks of the present day photodetection technology. The newly discovered cycling excitation process (CEP) can be a potential candidate to address these issues with linear photo response, single photon sensitivity and high gain bandwidth product. The key feature of CEP is introduction of counter dopants in p-n junction silicon diode, with which the efficiency of auger excitation can be enhanced to great extent by facilitating relaxation of k selection rule. Higher uncertainty in k spaces dictates localization of carriers in real space. Hence, an initial hot carrier can excite electron-hole pair between localized states (e.g. from states closer to valence band to states closer to conduction band) at much lower bias. Another essential component of CEP is phonon/field assisted tunneling from localized states to mobile bands. Contrary to other photodetectors, phonons, actually, play a positive role in achieving gain. Experimentally gain of ~4000 at only 4V have been achieved in the CEP test structure along with photo response dependence on input light power, which is helpful for photon number resolving. Temperature dependent measurement also shows the positive role of phonons. Density functional theory calculation shows the change in band structure with doping bulk crystalline silicon with boron (B) and phosphorous (P) simultaneously. Comparison of density of states exhibits existence of states inside band gap. Furthermore, charge density plot clearly demonstrates electron and hole localization centered around P and B atoms respectively. Hence, highly counter doping with BP atoms turns the crystalline silicon into a quasi-disordered material. Since, highly counter doping introduces disorder in silicon, with this notion naturally disordered materials are explored as possible CEP gain media. Amorphous materials have low mobility due to their nature of disorder. Surprisingly, amorphous silicon (a-Si) photodiodes with thin a-Si layer (~40nm) have shown a gain-bandwidth product of over 2 THz with very low excess noise. To unveil the true gain mechanism, the thesis further delves into theoretical modeling and numerical analysis along with experimental data at different frequencies. Evidence of highly effective carrier multiplication process within a-Si as the primary gain mechanism, especially at high frequency is shown. There is also trap-induced junction modulation at much lower frequency. The analysis further suggests that the carrier multiplication process in thin a-Si can be much more efficient than in thick a-Si, even stronger than single crystalline Si in some cases. Although seemingly counter intuitive, this is consistent with the proposed cycling excitation process (CEP) where the localized states in the bandtails of disordered materials such as a-Si relax the k-selection rule and increase the rate of carrier multiplication. A more rigorous quantum mechanical scattering rate calculation also demonstrates the increase of strength of carrier multiplication with the presence of localized states and the increase of ionization coefficient with decreasing thickness of gain medium. A theoretical framework is offered to calculate the carrier multiplication process in a-Si or other disordered materials involving donor acceptor pairs (DAPs) and to answer several key and seemingly counter intuitive questions such as why amorphous silicon can be more efficient carrier multiplication material than single crystal silicon, why low carrier mobility of amorphous material helps rather than hurt carrier multiplication process, and why thin a-Si is more efficient than thick a-Si in carrier multiplication.

نام شخص به منزله سر شناسه - (مسئولیت معنوی درجه اول )

مستند نام اشخاص تاييد نشده
Schneider, Emily Maureen

نام شخص - ( مسئولیت معنوی درجه دوم )

مستند نام اشخاص تاييد نشده
Niaz, Iftikhar Ahmad

شناسه افزوده (تنالگان)

مستند نام تنالگان تاييد نشده
UC San Diego

دسترسی و محل الکترونیکی

نام الکترونيکي
 مطالعه متن کتاب 

وضعیت انتشار

فرمت انتشار
p

اطلاعات رکورد کتابشناسی

نوع ماده
[Thesis]
کد کاربرگه
276903

اطلاعات دسترسی رکورد

سطح دسترسي
a
تكميل شده
Y

پیشنهاد / گزارش اشکال

اخطار! اطلاعات را با دقت وارد کنید
ارسال انصراف
این پایگاه با مشارکت موسسه علمی - فرهنگی دارالحدیث و مرکز تحقیقات کامپیوتری علوم اسلامی (نور) اداره می شود
مسئولیت صحت اطلاعات بر عهده کتابخانه ها و حقوق معنوی اطلاعات نیز متعلق به آنها است
برترین جستجوگر - پنجمین جشنواره رسانه های دیجیتال