Construction of wavelets through Walsh functions /
نام عام مواد
[Book]
نام نخستين پديدآور
Yu. A. Farkov, Pammy Manchanda, Abul Hasan Siddiqi.
وضعیت نشر و پخش و غیره
محل نشرو پخش و غیره
Singapore :
نام ناشر، پخش کننده و غيره
Springer,
تاریخ نشرو بخش و غیره
[2019]
مشخصات ظاهری
نام خاص و کميت اثر
1 online resource
فروست
عنوان فروست
Industrial and applied mathematics
يادداشت کلی
متن يادداشت
8 Wavelets Associated with Nonuniform Multiresolution Analysis on Positive Half Line
یادداشتهای مربوط به کتابنامه ، واژه نامه و نمایه های داخل اثر
متن يادداشت
Includes bibliographical references and index.
یادداشتهای مربوط به مندرجات
متن يادداشت
Intro; Preface; References; Contents; About the Authors; Introduction; References; 1 Introduction to Walsh Analysis and Wavelets; 1.1 Walsh Functions; 1.2 Walsh-Fourier Transform; 1.3 Haar Functions and Its Relationship with Walsh Functions; 1.4 Walsh-Type Wavelet Packets; 1.5 Wavelet Analysis; 1.5.1 Continuous Wavelet Transform; 1.5.2 Discrete Wavelet System; 1.5.3 Multiresolution Analysis; 1.6 Wavelets with Compact Support; 1.7 Exercises; References; 2 Walsh-Fourier Series; 2.1 Walsh-Fourier Coefficients; 2.1.1 Estimation of Walsh-Fourier Coefficients
متن يادداشت
2.1.2 Transformation of Walsh-Fourier Coefficients2.2 Convergence of Walsh-Fourier Series; 2.2.1 Summability in Homogeneous Banach Spaces; 2.3 Approximation by Transforms of Walsh-Fourier Series; 2.3.1 Approximation by Césaro Means of Walsh-Fourier Series; 2.3.2 Approximation by Nörlund Means of Walsh-Fourier Series in Lp Spaces; 2.3.3 Approximation by Nörlund Means in Dyadic Homogeneous Banach Spaces and Hardy Spaces; 2.4 Applications to Signal and Image Processing; 2.4.1 Image Representation and Transmission; 2.4.2 Data Compression; 2.4.3 Quantization of Walsh Coefficients
متن يادداشت
2.4.4 Signal Processing2.4.5 ECG Analysis; 2.4.6 EEG Analysis; 2.4.7 Speech Processing; 2.4.8 Pattern Recognition; 2.5 Exercises; References; 3 Haar-Fourier Analysis; 3.1 Haar System and Its Generalization; 3.2 Haar Fourier Series; 3.3 Haar System as Basis in Function Spaces; 3.4 Non-uniform Haar Wavelets; 3.5 Generalized Haar Wavelets and Frames; 3.6 Applications of Haar Wavelets; 3.6.1 Applications to Solutions of Initial and Boundary Value Problems; 3.6.2 Applications to Solutions of Integral Equations; 3.7 Exercises; References
متن يادداشت
4 Construction of Dyadic Wavelets and Frames Through Walsh Functions4.1 Preliminary; 4.2 Orthogonal Wavelets and MRA in L2(mathbbR+); 4.3 Orthogonal Wavelets with Compact Support on mathbbR+; 4.4 Estimates of the Smoothness of the Scaling Functions; 4.5 Approximation Properties of Dyadic Wavelets; 4.6 Exercise; References; 5 Orthogonal and Periodic Wavelets on Vilenkin Groups; 5.1 Multiresolution Analysis on Vilenkin Groups; 5.2 Compactly Supported Orthogonal p-Wavelets; 5.3 Periodic Wavelets on Vilenkin Groups; 5.4 Periodic Wavelets Related to the Vilenkin-Christenson Transform
متن يادداشت
5.5 Application to the Coding of Fractal FunctionsReferences; 6 Haar-Vilenkin Wavelet; 6.1 Introduction; 6.2 Haar-Vilenkin Wavelets; 6.2.1 Haar-Vilenkin Mother Wavelet; 6.3 Approximation by Haar-Vilenkin Wavelets; 6.4 Covergence Theorems; 6.5 Haar-Vilenkin Coefficients; 6.6 Exercises; References; 7 Construction Biorthogonal Wavelets and Frames; 7.1 Biorthogonal Wavelets on R+; 7.2 Biorthogonal Wavelets on Vilenkin Groups; 7.3 Construction of Biorthogonal Wavelets on The Vilenkin Group; 7.4 Frames on Vilenkin Group; 7.5 Application to Image Processing; References
بدون عنوان
0
بدون عنوان
8
بدون عنوان
8
بدون عنوان
8
بدون عنوان
8
یادداشتهای مربوط به خلاصه یا چکیده
متن يادداشت
This book focuses on the fusion of wavelets and Walsh analysis, which involves non-trigonometric function series (or Walsh-Fourier series). The primary objective of the book is to systematically present the basic properties of non-trigonometric orthonormal systems such as the Haar system, Haar-Vilenkin system, Walsh system, wavelet system and frame system, as well as updated results on the book's main theme. Based on lectures that the authors presented at several international conferences, the notions and concepts introduced in this interdisciplinary book can be applied to any situation where wavelets and their variants are used. Most of the applications of wavelet analysis and Walsh analysis can be tried for newly constructed wavelets. Given its breadth of coverage, the book offers a valuable resource for theoreticians and those applying mathematics in diverse areas. It is especially intended for graduate students of mathematics and engineering and researchers interested in applied analysis.
یادداشتهای مربوط به سفارشات
منبع سفارش / آدرس اشتراک
Springer Nature
شماره انبار
com.springer.onix.9789811363702
ویراست دیگر از اثر در قالب دیگر رسانه
عنوان
Construction of Wavelets Through Walsh Functions.
شماره استاندارد بين المللي کتاب و موسيقي
9789811363696
موضوع (اسم عام یاعبارت اسمی عام)
موضوع مستند نشده
Walsh functions.
موضوع مستند نشده
Wavelets (Mathematics)
موضوع مستند نشده
Walsh functions.
موضوع مستند نشده
Wavelets (Mathematics)
مقوله موضوعی
موضوع مستند نشده
MAT034000
موضوع مستند نشده
PBK
موضوع مستند نشده
PBK
رده بندی ديویی
شماره
515/
.
2433
ويراست
23
رده بندی کنگره
شماره رده
QA403
.
3
نشانه اثر
.
F37
2019
نام شخص به منزله سر شناسه - (مسئولیت معنوی درجه اول )