5.1.5 Long Short-Term Memory Recurrent Neural Network5.2 Discriminative; 5.2.1 Deep Neural Network in Software-Defined Networks; 5.2.2 Recurrent Neural Network; 5.2.3 Convolutional Neural Network; 5.2.4 Long Short-Term Memory Recurrent Neural Network; 5.2.4.1 LSTM-RNN Staudemeyer; 5.2.4.2 LSTM-RNN for Collective Anomaly Detection; 5.2.4.3 GRU in IoT; 5.2.4.4 LSTM-RNN for DDoS; 5.3 Hybrid; 5.3.1 Adversarial Networks; 5.4 Deep Reinforcement Learning; 5.5 Comparison; References; 6 Deep Feature Learning; 6.1 Deep Feature Extraction and Selection; 6.1.1 Methodology; 6.1.2 Evaluation.
متن يادداشت
6.1.2.1 Dataset Preprocessing6.1.2.2 Experimental Result; 6.2 Deep Learning for Clustering; 6.2.1 Methodology; 6.2.2 Evaluation; 6.3 Comparison; References; 7 Summary and Further Challenges; References; Appendix A A Survey on Malware Detection from Deep Learning; A.1 Automatic Analysis of Malware BehaviorUsing Machine Learning; A.2 Deep Learning for Classification of Malware System Call Sequences; A.3 Malware Detection with Deep Neural Network Using Process Behavior; A.4 Efficient Dynamic Malware Analysis Based on Network Behavior Using Deep Learning.
متن يادداشت
A.5 Automatic Malware Classification and New Malware Detection Using Machine LearningA. 6 DeepSign: Deep Learning for Automatic Malware Signature Generation and Classification; A.7 Selecting Features to Classify Malware; A.8 Analysis of Machine-Learning Techniques Used in Behavior-Based Malware Detection; A.9 Malware Detection Using Machine-Learning-Based Analysis of Virtual Memory Access Patterns; A.10 Zero-Day Malware Detection; References.
بدون عنوان
0
بدون عنوان
8
بدون عنوان
8
بدون عنوان
8
بدون عنوان
8
یادداشتهای مربوط به خلاصه یا چکیده
متن يادداشت
This book presents recent advances in intrusion detection systems (IDSs) using state-of-the-art deep learning methods. It also provides a systematic overview of classical machine learning and the latest developments in deep learning. In particular, it discusses deep learning applications in IDSs in different classes: generative, discriminative, and adversarial networks. Moreover, it compares various deep learning-based IDSs based on benchmarking datasets. The book also proposes two novel feature learning models: deep feature extraction and selection (D-FES) and fully unsupervised IDS. Further challenges and research directions are presented at the end of the book. Offering a comprehensive overview of deep learning-based IDS, the book is a valuable reerence resource for undergraduate and graduate students, as well as researchers and practitioners interested in deep learning and intrusion detection. Further, the comparison of various deep-learning applications helps readers gain a basic understanding of machine learning, and inspires applications in IDS and other related areas in cybersecurity.
یادداشتهای مربوط به سفارشات
منبع سفارش / آدرس اشتراک
Springer Nature
شماره انبار
com.springer.onix.9789811314445
ویراست دیگر از اثر در قالب دیگر رسانه
شماره استاندارد بين المللي کتاب و موسيقي
9789811314438
شماره استاندارد بين المللي کتاب و موسيقي
9789811314452
موضوع (اسم عام یاعبارت اسمی عام)
موضوع مستند نشده
Computer security.
موضوع مستند نشده
Data mining.
موضوع مستند نشده
Intrusion detection systems (Computer security)
موضوع مستند نشده
Machine learning.
موضوع مستند نشده
Artificial intelligence.
موضوع مستند نشده
Computer security.
موضوع مستند نشده
Computer security.
موضوع مستند نشده
COMPUTERS-- General.
موضوع مستند نشده
Data mining.
موضوع مستند نشده
Data mining.
موضوع مستند نشده
Databases.
موضوع مستند نشده
Intrusion detection systems (Computer security)
موضوع مستند نشده
Machine learning.
موضوع مستند نشده
WAP (wireless) technology.
مقوله موضوعی
موضوع مستند نشده
COM-- 000000
موضوع مستند نشده
UR
موضوع مستند نشده
UR
رده بندی ديویی
شماره
006
.
3/1
ويراست
23
رده بندی کنگره
شماره رده
Q325
.
5
نام شخص به منزله سر شناسه - (مسئولیت معنوی درجه اول )