Variational regularization for systems of inverse problems :
نام عام مواد
[Book]
ساير اطلاعات عنواني
Tikhonov regularization with multiple forward operators /
نام نخستين پديدآور
Richard Huber.
وضعیت نشر و پخش و غیره
محل نشرو پخش و غیره
Wiesbaden, Germany :
نام ناشر، پخش کننده و غيره
Springer Spektrum,
تاریخ نشرو بخش و غیره
2019.
مشخصات ظاهری
نام خاص و کميت اثر
1 online resource (ix, 136 pages) :
ساير جزييات
illustrations
فروست
عنوان فروست
BestMasters,
شاپا ي ISSN فروست
2625-3577
یادداشتهای مربوط به کتابنامه ، واژه نامه و نمایه های داخل اثر
متن يادداشت
Includes bibliographical references.
یادداشتهای مربوط به مندرجات
متن يادداشت
Intro; Acknowledgements; Contents; List of Figures; I. Introduction; I.1. Motivation; I.2. Mathematical Foundation; I.2.1 Topologies; I.2.2 Normed Vector Spaces; I.2.3 Measure Theory; I.2.4 Convex Analysis; II. General Tikhonov Regularisation; II. 1. Single-Data Tikhonov Regularisation; II. 1.1 Existence and Stability; II. 1.2 Convergence; II. 2. Multi-Data Tikhonov Regularisation; II. 2.1 Preliminaries; II. 2.2 Parameter Choices for Vanishing Noise; II. 2.3 Convergence rates; III. Specific Discrepancies; III. 1. Norm Discrepancies; III. 1.1 Classical Norms; III. 1.2 Subnorms
متن يادداشت
III. 2. Kullback-Leibler DivergenceIII. 2.1 Motivation; III. 2.2 Basic Properties; III. 2.3 Continuity Results; III. 2.4 Applicability as a Discrepancy; IV. Regularisation Functionals; IV. 1. Regularisation with Norms and Closed Operators; IV. 2. Total Deformation; IV. 2.1 Symmetric Tensor Fields; IV. 2.2 Tensor Fields of Bounded Deformation; IV. 3. Total Generalised Variation; IV. 3.1 Basic Properties; IV. 3.2 Topological Properties; IV. 3.3 Total Generalised Variation of Vector-Valued Functions; IV. 4. TGV Regularisation in a Linear Setting; V. Application to STEM Tomography Reconstruction
متن يادداشت
v. 1. The Radon TransformV. 1.1 Deriving the Radon Transform; V.1.2 Analytical Properties; V.1.3 Filtered Backprojection; V.2. Tikhonov Approach to Multi-Spectra STEM Tomography Reconstruction; V.2.1 Continuous Tikhonov Problem for STEM Tomography Reconstruction; V.2.2 Discretisation Scheme; V.2.3 Primal-Dual Optimisation Algorithm; V.2.4 STEM Tomography Reconstruction Algorithm; V.3. Discussion of Numerical Results; V.3.1 Preprocessing; V.3.2 Synthetic Experiments; V.3.3 Reconstruction of Single-Data HAADF Signals; V.3.4 STEM Multi-Spectral Reconstructions; Summary; Bibliography
بدون عنوان
0
بدون عنوان
8
بدون عنوان
8
یادداشتهای مربوط به خلاصه یا چکیده
متن يادداشت
Tikhonov regularization is a cornerstone technique in solving inverse problems with applications in countless scientific fields. Richard Huber discusses a multi-parameter Tikhonov approach for systems of inverse problems in order to take advantage of their specific structure. Such an approach allows to choose the regularization weights of each subproblem individually with respect to the corresponding noise levels and degrees of ill-posedness. Contents General Tikhonov Regularization Specific Discrepancies Regularization Functionals Application to STEM Tomography Reconstruction Target Groups Researchers and students in the field of mathematics Experts in the areas of mathematics, imaging, computer vision and nanotechnology The Author Richard Huber wrote his master?s thesis under the supervision of Prof. Dr. Kristian Bredies at the Institute for Mathematics and Scientific Computing at Graz University, Austria.
ویراست دیگر از اثر در قالب دیگر رسانه
عنوان
Variational regularization for systems of inverse problems.
شماره استاندارد بين المللي کتاب و موسيقي
9783658253899
موضوع (اسم عام یاعبارت اسمی عام)
موضوع مستند نشده
Inverse problems (Differential equations)
موضوع مستند نشده
Inverse problems (Differential equations)
رده بندی ديویی
شماره
515/
.
357
ويراست
23
رده بندی کنگره
شماره رده
QA371
نام شخص به منزله سر شناسه - (مسئولیت معنوی درجه اول )