Harmonic balance for nonlinear vibration problems /
نام عام مواد
[Book]
نام نخستين پديدآور
Malte Krack and Johann Gross.
وضعیت نشر و پخش و غیره
محل نشرو پخش و غیره
Cham, Switzerland :
نام ناشر، پخش کننده و غيره
Springer,
تاریخ نشرو بخش و غیره
[2019]
مشخصات ظاهری
نام خاص و کميت اثر
1 online resource :
ساير جزييات
illustrations
فروست
عنوان فروست
Mathematical engineering
یادداشتهای مربوط به کتابنامه ، واژه نامه و نمایه های داخل اثر
متن يادداشت
Includes bibliographical references.
یادداشتهای مربوط به مندرجات
متن يادداشت
Intro; Preface; References; Contents; Symbols and Abbreviations; 1 Introduction; 1.1 What Can Harmonic Balance Do?; 1.2 Example: Duffing Oscillator; 1.3 Scope and Outline of This Book; References; 2 Theory of Harmonic Balance; 2.1 Fourier Analysis; 2.2 The Periodic Boundary Value Problem; 2.3 Weighted Residual Approaches; 2.4 Harmonic Balance and Other Fourier Methods; References; 3 Application to Mechanical Systems; 3.1 Range of Utility of Harmonic Balance; 3.2 Harmonic Balance Equations; 3.3 Treatment of Nonlinear Forces; 3.4 Selection of the Harmonic Truncation Order
متن يادداشت
3.5 Why is Harmonic Balance Faster than Numerical Integration?3.6 Stability Analysis; 3.7 Quasi-periodic Oscillations; 3.8 Brief Historical Perspective; 3.9 Current Challenges; References; 4 Solving the Harmonic Balance Equations; 4.1 Problem Statement; 4.2 Solution Strategies; 4.3 Computing a Solution Point Near a Good Initial Guess; 4.4 Computing a Branch of Solution Points; 4.5 Finding a Good Initial Guess; 4.6 Handling of Branching Points and Isolated Branches; References; 5 Solved Exercises and Homework Problems; References; A Topelitz Structure of the Jacobian
بدون عنوان
0
بدون عنوان
8
یادداشتهای مربوط به خلاصه یا چکیده
متن يادداشت
This monograph presents an introduction to Harmonic Balance for nonlinear vibration problems, covering the theoretical basis, its application to mechanical systems, and its computational implementation. Harmonic Balance is an approximation method for the computation of periodic solutions of nonlinear ordinary and differential-algebraic equations. It outperforms numerical forward integration in terms of computational efficiency often by several orders of magnitude. The method is widely used in the analysis of nonlinear systems, including structures, fluids and electric circuits. The book includes solved exercises which illustrate the advantages of Harmonic Balance over alternative methods as well as its limitations. The target audience primarily comprises graduate and post-graduate students, but the book may also be beneficial for research experts and practitioners in industry.
یادداشتهای مربوط به سفارشات
منبع سفارش / آدرس اشتراک
Springer Nature
شماره انبار
com.springer.onix.9783030140236
ویراست دیگر از اثر در قالب دیگر رسانه
عنوان
Harmonic balance for nonlinear vibration problems.
شماره استاندارد بين المللي کتاب و موسيقي
9783030140229
موضوع (اسم عام یاعبارت اسمی عام)
موضوع مستند نشده
Differential equations, Nonlinear.
موضوع مستند نشده
Nonlinear mechanics.
موضوع مستند نشده
Vibration-- Mathematical models.
موضوع مستند نشده
Differential equations, Nonlinear.
موضوع مستند نشده
Nonlinear mechanics.
موضوع مستند نشده
SCIENCE-- Mechanics-- General.
موضوع مستند نشده
SCIENCE-- Mechanics-- Solids.
موضوع مستند نشده
Vibration-- Mathematical models.
مقوله موضوعی
موضوع مستند نشده
SCI-- 041000
موضوع مستند نشده
SCI-- 096000
موضوع مستند نشده
TBJ
موضوع مستند نشده
TBJ
رده بندی ديویی
شماره
531
.
015
ويراست
23
رده بندی کنگره
شماره رده
QA805
نام شخص به منزله سر شناسه - (مسئولیت معنوی درجه اول )